AGC029 E: Wandering TKHS
E: Wandering TKHS - AtCoder Grand Contest 029 | AtCoder
分类讨论好题(也不太算分类讨论)
方法:感受过程手玩,考虑能不能提前预算一些东西,或者递推,递归
也就是,找问题划分点
关注一个点x到根节点的最大值mx[x](包括自己)
因为最大值的父亲fa[mx[x]]的ans一定不会扩展mx[x]
所以求出mx[x]
对于mx[x]!=x情况
定义son[x],x的mx[x]往x方向走的第一个儿子
x一定会历经艰难扩展到mx,期间son[x]子树内,mx[*]=mx[x]的*都会被扩展。第一部分
走到了mx
之后,son[x]子树不会有任何扩展,
但是还可能会扩展一些mx除了son[x]的其他子树点y
如果y到根的次大值(最大值一定也是mx)是mx到根的次大值se[mx]的话,那么一定在次大值及之前会被扩展。第二部分
所以,次大值也关心。
然后就是ans[fa[mx]]了,之前已经算过,而且不会算重!第三部分
子树某个值出现次数
第一部分线段树合并
第二部分线段树合并,再减去son[x]子树的贡献
对于mx[x]==x情况
更好处理
直接变成上述情况的第二部分。mx子树内,se[*]=se[x]的个数
线段树合并。
代码:
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
#define pb push_back
#define solid const auto &
#define enter cout<<endl
#define pii pair<int,int>
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);(fl==true)&&(x=-x);}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');}
namespace Modulo{
const int mod=;
int ad(int x,int y){return (x+y)>=mod?x+y-mod:x+y;}
void inc(int &x,int y){x=ad(x,y);}
int mul(int x,int y){return (ll)x*y%mod;}
void inc2(int &x,int y){x=mul(x,y);}
int qm(int x,int y=mod-){int ret=;while(y){if(y&) ret=mul(x,ret);x=mul(x,x);y>>=;}return ret;}
}
//using namespace Modulo;
namespace Miracle{
const int N=2e5+;
int n;
struct node{
int nxt,to;
}e[*N];
int hd[N],cnt;
void add(int x,int y){
e[++cnt].nxt=hd[x];
e[cnt].to=y;
hd[x]=cnt;
}
int se[N],mx[N];
int son[N];
int pa[N];
void dfs(int x,int fa){
se[x]=se[fa];
mx[x]=mx[fa];
if(x>mx[x]){
se[x]=mx[x];mx[x]=x;
}else se[x]=max(se[x],x);
if(mx[x]==mx[fa]){
if(mx[fa]==fa) son[x]=x;
else son[x]=son[fa];
}
for(reg i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
pa[y]=x;
dfs(y,x);
}
}
struct tr{
int ls,rs;
int cnt[];
}t[N*];
int tot;
int rt[N];
#define mid ((l+r)>>1)
void upda(int &x,int l,int r,int p,int c){
if(!x) x=++tot;
if(l==r){
t[x].cnt[c]++;return;
}
if(p<=mid) upda(t[x].ls,l,mid,p,c);
else upda(t[x].rs,mid+,r,p,c);
}
int merge(int x,int y,int l,int r){
if(!x||!y) return x+y;
if(l==r){
t[x].cnt[]=t[x].cnt[]+t[y].cnt[];
t[x].cnt[]=t[x].cnt[]+t[y].cnt[];
return x;
}
t[x].ls=merge(t[x].ls,t[y].ls,l,mid);
t[x].rs=merge(t[x].rs,t[y].rs,mid+,r);
return x;
}
void dfs2(int x,int fa){
upda(rt[x],,n,mx[x],);
upda(rt[x],,n,se[x],);
for(reg i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
dfs2(y,x);
rt[x]=merge(rt[x],rt[y],,n);
}
}
int query(int x,int l,int r,int p,int c){
if(!x) return ;
if(l==r) return t[x].cnt[c];
if(p<=mid) return query(t[x].ls,l,mid,p,c);
else return query(t[x].rs,mid+,r,p,c);
}
int ans[N];
void fin(int x,int fa){
if(x!=){
if(mx[x]!=x){
int A=query(rt[son[x]],,n,mx[x],),B=query(rt[mx[x]],,n,se[mx[x]],),C=-query(rt[son[x]],,n,se[mx[x]],),D=ans[pa[mx[x]]];
// cout<<" xx "<<x<<" : "<<A<<" "<<B<<" "<<C<<" "<<D<<endl;
ans[x]=A+B+C+D;
}else{
ans[x]=query(rt[x],,n,se[x],)+ans[fa];
}
}
for(reg i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
fin(y,x);
}
}
int main(){
rd(n);int x,y;
for(reg i=;i<n;++i){
rd(x);rd(y);
add(x,y);add(y,x);
}
dfs(,);
dfs2(,);
// prt(se,1,n);
// prt(mx,1,n);
// prt(son,1,n);
fin(,);
prt(ans,,n);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
*/
mx的发现很关键,以mx位置为划分点,可以把问题分成若干部分处理,
由于fa[mx]不会再进入mx,还支持递归!
AGC029 E: Wandering TKHS的更多相关文章
- Solution -「AGC 029E」「AT 4504」Wandering TKHS
\(\mathcal{Description}\) Link. 给一棵 \(n\) 个点的树,从某个点出发,遍历时必须走到已经走过的连通块所邻接的编号最小的结点.求从每个点出发,走到 \(1\ ...
- [Agc029E]Wandering TKHS_树形dp_树上差分
Wandering TKHS 题目链接:https://atcoder.jp/contests/agc029/tasks/agc029_e 数据范围:略. 题解: 好神啊 Orz司队 https:// ...
- 【AtCoder】AGC029(A-E)
A - Irreversible operation 题解 把每个B后面的W个数累加起来即可 代码 #include <bits/stdc++.h> #define fi first #d ...
- f2fs解析(一)f2fs如何解决wandering tree
wandering tree问题是log-structured 文件系统(LFS) 特有的一个问题,因为LFS的脏数据是追加更新的,所以如果一个数据块变脏了,那么那个数据块的直接索引块.间接索引块都会 ...
- hdu6229 Wandering Robots 2017沈阳区域赛M题 思维加map
题目传送门 题目大意: 给出一张n*n的图,机器人在一秒钟内任一格子上都可以有五种操作,上下左右或者停顿,(不能出边界,不能碰到障碍物).题目给出k个障碍物,但保证没有障碍物的地方是强联通的,问经过无 ...
- Reading Famous blog to prevent me wasting time on blind wandering
I can`t help surfing the useless bbs and some other kind of SNS. The time I begin to do it, it costs ...
- HDU 6229 - Wandering Robots - [概率题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6229 转载: https://blog.csdn.net/Anna__1997/article/det ...
- 【概率】【找规律】hdu6229 Wandering Robots
题意:一个机器人在正方形迷宫的左上角,迷宫里有些格子有障碍物,每一步机器人会等概率地向能走的格子转移(包含自身).问你无限长的时间之后,机器人处于矩形对角线的右下方的概率. 无限长时间意味着,起点没有 ...
- HDU 6229 Wandering Robots(2017 沈阳区域赛 M题,结论)
题目链接 HDU 6229 题意 在一个$N * N$的格子矩阵里,有一个机器人. 格子按照行和列标号,左上角的坐标为$(0, 0)$,右下角的坐标为$(N - 1, N - 1)$ 有一个机器人, ...
随机推荐
- 【agc019f】AtCoder Grand Contest 019 F - Yes or No
题意 有n个问题答案为YES,m个问题答案为NO. 你只知道剩下的问题的答案分布情况. 问回答完N+M个问题,最优策略下的期望正确数. 解法 首先确定最优策略, 对于\(n<m\)的情况,肯定回 ...
- Linux中如何安装mysql数据库
安装mysql 1.解压源码压缩包 如果服务器可以上网也可以采用在线安装方式,在线安装操作简单具体见下面在线安装步骤 进入源码压缩包所在目录输入#tar -zxvf mysql-5.6.17-linu ...
- JasperReports报表数据源10
数据源的结构数据容器.同时生成报告,Jasper报表引擎获得来自数据源的数据.数据可以从数据库,XML文件,对象数组和集合中的对象来获得.我们将在本章填充报告所看到的fillReportXXX()方法 ...
- TZ_16_Vue父子组件之间的通信
1.父向子传递props,该如何传递 <!DOCTYPE html> <html lang="en"> <head> <meta char ...
- JS---案例:无刷新评论---属于创建对象的案例拿出来复习
案例:无刷新评论---属于创建对象的案例拿出来复习 创建行和单元格,添加到相应元素中,设置内容 createElement, appendChild,innerHTML <!DOCTYPE ht ...
- “本地视频使用flashFXP上传虚拟服务器“的方法
一.视频转换格式 首先,想要在网页中直接嵌入视频,就得用video标签,而<video>支持的仅有的几种格式中,MP4是兼容性,通用性各方面相对友好的,所以,建议上传之前先转换格式并压缩. ...
- mysql查询某个字段并修改
比如我存储的数据,有的是 山东,有的是山东省 我想统一改为山东省 UPDATE t_security SET province = REPLACE( province, '山东', '山东省' ) W ...
- oracle基本认识
概要图 1. 环境搭建 1.1 Oracle的安装 数据库的三个常用的用户及默认密码sys:change_on_installsystem:managerscott:tiger Oracle客户端: ...
- Laravel 某个字段更新失败的原因
明明有这个title, 但是却始终更新不成功 原因是模型这里设置了可以更新的字段,所以直接用Db::table更新会成功
- agc015F Kenus the Ancient Greek
题意: 有$Q$次询问,每次给定$X_i$和$Y_i$,求对于$1\leq x \leq X_i , 1 \leq y \leq Y_i$,$(x,y)$进行辗转相除法的步数的最大值以及取到最大值的方 ...