解题思路:

  这是一道以快速幂计算为原理的题,实际上也属于求最短路径的题目类型。那么我们可以以当前求出的幂的集合为状态,采用IDA*方法即可求解。问题的关键在于如何剪枝效率更高。笔者采用的剪枝方法是:

  1)如果当前状态幂集合中的最大元素max满足 max*2^(maxd-cur_d)<n,则剪枝。原因是:在每一次状态转移后,max最多增大一倍。(maxd-cur_d)次转移之后,max最多变成原来的2^(maxd-cur_d)倍,然而如果当前状态的极限情况下仍有max<n,则当前状态结点一定无法出解。

  2)解的幂集合中最多只有一个元素比目标n大。

采用反证法,证明如下:

  假设解的幂集合中存在m2>m1>n ,那么必然存在从m2到达m1的路径p1,和从m1到达n的路径p2(否则与假设矛盾)。

  设路径p1花费步数s1,路径p2花费步数s2,那么从m2到达n的步数为s3=s2+s1>s2。

  然而由于我们采用IDA*算法,由于s2<s3,路径p2会先被找到,当前状态不会出现,产生矛盾,得证。

有了以上优化思路,代码效率将会极大提高。

代码如下:

 #include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <set>
#include <algorithm> using namespace std;
#define time__ printf("time : %f\n",double(clock())/CLOCKS_PER_SEC) int tar_n;
int power[+];
vector<int> S;
int maxd;
int S_upper_n(){
int cnt=;
for(int i=;i<S.size();i++)
if(S[i]>tar_n) cnt++;
return cnt;
}
bool dfs(int d){
if(d==maxd){
if(power[tar_n]) return true;
else return false;
}
int S_max=;
for(int i=;i<S.size();i++)
S_max=max(S_max,S[i]);
if(((S_max)<<(maxd-d))<tar_n||S_upper_n()>)
return false;
for(int i=S.size()-;i>=;i--){
int t;
t=S[S.size()-]+S[i];
if(power[t]==){
S.push_back(t);
power[t]=;
if(dfs(d+)) return true;
S.pop_back();
power[t]=;
}
t=S[S.size()-]-S[i];
if(t>&&power[t]==){
S.push_back(t);
power[t]=;
if(dfs(d+)) return true;
S.pop_back();
power[t]=;
}
}
return false;
}
bool solve(){
memset(power, , sizeof power);
S.clear();
S.push_back();
power[]=;
if(dfs())
return true;
return false;
}
int main() {
while(scanf("%d",&tar_n)&&tar_n){
maxd=;
int temp=;
while(temp<tar_n){
maxd++;
temp+=temp;
}
for(;;maxd++)
if(solve()){
printf("%d\n",maxd);
//time__;
break;
}
}
//time__;
return ;
}

UVa 1374 - Power Calculus——[迭代加深搜索、快速幂]的更多相关文章

  1. UVA - 1374 Power Calculus (dfs迭代加深搜索)

    题目: 输入正整数n(1≤n≤1000),问最少需要几次乘除法可以从x得到xn ?在计算过程中x的指数应当总是正整数. 思路: dfs枚举次数深搜 注意: 1.指数如果小于0,就退出当前的搜索 2.n ...

  2. UVA-1374 Power Calculus (迭代加深搜索)

    题目大意:问最少经过几次乘除法可以使x变成xn. 题目分析:迭代加深搜索. 代码如下: # include<iostream> # include<cstdio> # incl ...

  3. UVA 529 - Addition Chains,迭代加深搜索+剪枝

    Description An addition chain for n is an integer sequence  with the following four properties: a0 = ...

  4. uva 11212 - Editing a Book(迭代加深搜索 IDA*) 迭代加深搜索

    迭代加深搜索 自己看的时候第一遍更本就看不懂..是非常水,但智商捉急也是没有办法的事情. 好在有几个同学已经是做过了这道题而且对迭代加深搜索的思路有了一定的了解,所以在某些不理解的地方询问了一下他们的 ...

  5. UVA 1343 - The Rotation Game-[IDA*迭代加深搜索]

    解题思路: 这是紫书上的一道题,一开始笔者按照书上的思路采用状态空间搜索,想了很多办法优化可是仍然超时,时间消耗大的原因是主要是: 1)状态转移代价很大,一次需要向八个方向寻找: 2)哈希表更新频繁: ...

  6. UVA 11212 Editing a Book [迭代加深搜索IDA*]

    11212 Editing a Book You have n equal-length paragraphs numbered 1 to n. Now you want to arrange the ...

  7. poj 3134 Power Calculus(迭代加深dfs+强剪枝)

    Description Starting with x and repeatedly multiplying by x, we can compute x31 with thirty multipli ...

  8. UVA1374-Power Calculus(迭代加深搜索)

    Problem UVA1374-Power Calculus Accept:323  Submit:2083 Time Limit: 3000 mSec  Problem Description  I ...

  9. UVA 1374 Power Calculus

    题意: 给出m,问对n最少进行几次操作.n初始为1,能得到m.操作1位将n平方.操作2为将n除以之前出现的n值中的任意一个. 分析: 其实是关于指数的操作,即从1到m最少的步数.我们可以先确定最少步数 ...

随机推荐

  1. typeof与js数据类型

    js有6种数据类型有null.undefied.string.number.boolean.object. 然而我之前的[误区]: typeof的返回值和JS的数据类型是一样的.但是并不是(⊙o⊙)哦 ...

  2. 【机器学习PAI实战】—— 玩转人工智能之你最喜欢哪个男生?

    摘要: 分类问题是生活中最常遇到的问题之一.普通人在做出选择之前,可能会犹豫不决,但对机器而言,则是唯一必选的问题.我们可以通过算法生成模型去帮助我们快速的做出选择,而且保证误差最小.充足的样本,合适 ...

  3. vsync信号产生与分发

    以下分析基于android 4.4代码 vsync信号的产生.分发涉及到以下几个类,先主要了解下他们各自的功能: HWComposer:产生hardware vsync,post fb VSyncTh ...

  4. Thrift框架应用参考

    Thrift https://blog.csdn.net/aquester/article/details/48261609 https://www.cnblogs.com/liboBlog/p/60 ...

  5. viewpager实现进入程序之前的欢迎界面效果

    用viewpager实现该效果大致需要5步 1,用support.v4包下的ViewPager.xml布局如下: <android.support.v4.view.ViewPager andro ...

  6. 【JZOJ4746】【NOIP2016提高A组模拟9.3】树塔狂想曲

    题目描述 相信大家都在长训班学过树塔问题,题目很简单求最大化一个三角形数塔从上往下走的路径和.走的规则是:(i,j)号点只能走向(i+1,j)或者(i+1,j+1).如下图是一个数塔,映射到该数塔上行 ...

  7. c++之手写strcmp

    int strcmp(const char* str1, const char*str2){ assert(str1 != NULL&&str2 != NULL); while (*s ...

  8. Python中if __name__ == '__main__':理解

    在很多python脚本中在最后的部分会执行一个判断语句if __name__ == "__main__:",之后还可能会有一些执行语句.那添加这个判断的目的何在? 在python编 ...

  9. Codeforces 336C

    这题是大一暑假时候做的,当时没有出,直到今天突然觉得应该把没过的题目再做一边,不然真的是越积越多. 现在能够独立做出来真的是难以表达的兴奋,刚开始的时候就觉得 O(30 * 30 * n)的复杂度有点 ...

  10. jenkins使用教程!

    http://jenkins-ci.org/ 首先去官方下载war包,直接安装jenkins的方式比较麻烦. 下载tomcat,jdk和ant cd /optwget http://mirrors.h ...