Sightseeing Cows

给出一张图,点数为L,边数P,并给出边的边权\(\{b_i\}\),再给处每个点的点权,求一条起点和终点相同的路径,并使其点权之和除以边权之和最大,注意,路径中点权只能被计算一次,而边权可以重复计算, (2 ≤ L ≤ 1000), (2 ≤ P ≤ 5000)。

显然为分数规划问题,关键在点权与边权不对应上,于是自然的想法是点权移边权,而一条起点与终点相同的路径即一个联通分量,所以问题现在在于点权移边权后只对环成立,而不对联通分量成立,于是考虑证明联通分量对结果没有影响,于是设一个大环它的路径长\(b_1\),点权\(a_1\),一个小环路径长\(b_2\),点权\(a_2\),设他们是套在一起的环,所以会有重叠的地方。

不难得知,大环的比率为\(\frac{a_1}{b_1}\),小环比率\(\frac{a_2}{b_2}\),而套在一起的环比率仍按照不去点权算为\(\frac{a_1+a_2}{b_1+b_2}\),由分数三角不等式结论,我们知道\(\frac{a_1+a_2}{b_1+b_2}\leq max(\frac{a_1}{b_1},\frac{a_2}{b_2})\)

所以我们可以知道实际上环套环,即联通分量对结果没有影响,于是移点下边,接下来照着最优比率环的基本套路即可,但是注意此处要算出一个具体的比较大的ans很难做到,于是迭代就不能使用了,但是你的聪明才智或许能想到一种好的解决办法。

参考代码:

#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
#define il inline
#define ri register
#define exact 0.000001
using namespace std;
struct point{
int next,to,a,b;
double c;
}ar[5001];int at;
bool is[1001];
double dis[10001];
int f[1001],head[1001],n,
t1[4000001],tot[1001];
il bool check(double);
il double dfs(double,double);
il void link(int,int,int,int),read(int&);
int main(){
int m,i,j,k;
read(n),read(m);
for(i=1;i<=n;++i)read(f[i]);
while(m--)read(i),read(j),read(k),
link(i,j,f[j],k);
printf("%.2lf",dfs(0,100));
return 0;
}
il bool check(double x){
int i,h(0),t(0);
memset(is,0,sizeof(is)),memset(tot,0,sizeof(tot)),
memset(dis,0,sizeof(dis));
for(i=1;i<=n;++i)t1[++t]=i;
for(i=1;i<=at;++i)
ar[i].c=ar[i].b*x-ar[i].a;
while(h<t){
++h,is[t1[h]]|=true;
for(i=head[t1[h]];i;i=ar[i].next)
if(ar[i].c+dis[t1[h]]<dis[ar[i].to]){
dis[ar[i].to]=ar[i].c+dis[t1[h]];
if(is[ar[i].to]){
t1[++t]=ar[i].to,is[ar[i].to]&=false;
if(++tot[ar[i].to]>=n)return true;
}
}
}return false;
}
il double dfs(double l,double r){
double mid;
while(r-l>exact){
mid=(l+r)/2;
if(check(mid))l=mid+exact;
else r=mid-exact;
}return (l+r)/2;
}
il void read(int &x){
x&=0;ri char c;while(c=getchar(),c<'0'||c>'9');
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
}
il void link(int x,int y,int a,int b){
ar[++at].a=a,ar[at].b=b,ar[at].to=y;
ar[at].next=head[x],head[x]=at;
}

Sightseeing Cows的更多相关文章

  1. 【POJ3621】Sightseeing Cows

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8331   Accepted: 2791 ...

  2. Sightseeing Cows(最优比率环)

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8915   Accepted: 3000 ...

  3. P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows [](https://www.cnblogs.com/images/cnblogs_com/Tony-Double-Sky ...

  4. 【POJ3621】Sightseeing Cows 分数规划

    [POJ3621]Sightseeing Cows 题意:在给定的一个图上寻找一个环路,使得总欢乐值(经过的点权值之和)/ 总时间(经过的边权值之和)最大. 题解:显然是分数规划,二分答案ans,将每 ...

  5. 【POJ3621】【洛谷2868】Sightseeing Cows(分数规划)

    [POJ3621][洛谷2868]Sightseeing Cows(分数规划) 题面 Vjudge 洛谷 大意: 在有向图图中选出一个环,使得这个环的点权\(/\)边权最大 题解 分数规划 二分答案之 ...

  6. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  7. POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10306   Accepted: 3519 ...

  8. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题目描述 Farmer John has decided to reward his cows for their har ...

  9. POJ3621 Sightseeing Cows 最优比率环 二分法

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  10. [USACO07DEC]Sightseeing Cows(负环,0/1分数规划)

    [USACO07DEC]Sightseeing Cows Description Farmer John has decided to reward his cows for their hard w ...

随机推荐

  1. 基于Netty的RPC架构学习笔记(十):自定义数据包协议

    文章目录 数据包简介 粘包.分包现象 数据包格式 举个

  2. C89,C99: C数组&结构体&联合体快速初始化

    1. 背景 C89标准规定初始化语句的元素以固定顺序出现,该顺序即待初始化数组或结构体元素的定义顺序. C99标准新增指定初始化(Designated Initializer),即可按照任意顺序对数组 ...

  3. hash值的计算与转换 分类: ACM TYPE 2015-05-07 17:49 36人阅读 评论(0) 收藏

    #include <bits/stdc++.h> using namespace std; const int MAXN = 100; const int X = 3; long long ...

  4. iOS 7.1的Safari为meta标签新增minimal-ui属性,在网页加载时隐藏地址栏与导航栏

    在 iOS 7.1 的 Safari 中为 meta 标签新增 minimal-ui 属性,让网页在加载时便可隐藏顶部的地址栏与底部的导航栏. 如何实现?你只需将“minimal-ui”加入 view ...

  5. 前端开发者进阶之ECMAScript新特性--Object.create

    前端开发者进阶之ECMAScript新特性[一]--Object.create   Object.create(prototype, descriptors) :创建一个具有指定原型且可选择性地包含指 ...

  6. HDU 4325 离散化+树状数组 或者 不使用树状数组

    题意:给出一些花的开放时间段,然后询问某个时间点有几朵花正在开放. 由于ti<1e9,我们需要先将时间离散化,然后将时间点抽象为一个数组中的点,显然,我们需要进行区间更新和单点查询,可以考虑线段 ...

  7. Git查看历史记录的几种方法

  8. windows 10 无法启动 windows update 服务 错误 0x80070005 拒绝访问

    windows 10 无法启动 windows update 服务 错误 0x80070005 拒绝访问: 解决方法: 首先重命名系统盘 windows目录下的代号为“SoftwareDistribu ...

  9. Jupyter notebook文件默认存储路径以及更改方法

    1.文件默认存储路径怎么查?  安装Anaconda后,新建文件的默认存储路径一般在C系统盘,那么路径是什么呢? 首先,新建一个.ipynb文件, 输入以下脚本,运行出的结果即是当前jupyter文件 ...

  10. QQ空间删除日志

    按下F12,贴上如下代码 var delay = 2000; function del() { document.querySelector(".app_canvas_frame" ...