$bzoj4237$稻草人 $cdq$分治
正解:$cdq$分治
解题报告:
$umm$总感觉做过这题的亚子,,,?
先把坐标离散化,然后把所有点先按$x$排序$QwQ$,然后用类似平面最近点对的方法,先分别解决$mid$两侧的,然后现在就只要考虑两个端点分别在两侧的点了$QwQ$
考虑枚举右上的点然后计算左下有多少个点满足条件?
首先对于左下的点,由条件二可得显然是要维护一个横坐标单增纵坐标单减的单调栈
然后对于右上的点$(x_i,y_i)$,发现就找到满足$y\leq y_i,x\leq x_i$的点的$y_{max}$,然后在左侧的单调栈中二分找到所有满足$y\geq y_{max}$的点,计入答案就成$QwQ$
然后发现这个找$y_max$的也可以用单调栈维护?就维护一个横坐标单增纵坐标单增的单调栈昂$QwQ$
然后就做完辣?$QwQ$
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define ll long long
#define t(i) edge[i].to
#define w(i) edge[i].wei
#define fy(i) edge[i].fy
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define lb(x) lower_bound(st+1,st+1+n,x)-st
#define e(i,x) for(ri i=head[x];i;i=edge[i].nxt) const int N=2e5+;
int n,st[N];
ll as;
struct node{int x,y;}nod[N],t1[N],t2[N],stck1[N],stck2[N]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il bool cmp(node gd,node gs){return gd.x<gs.x;}
il int fd(ri dat,ri lim)
{
ri l=,r=lim;
while(l<r){ri mid=(l+r)>>;if(stck1[mid+].y>dat)r=mid;else l=mid+;}
return r;
}
void solv(ri l,ri r)
{
if(l==r)return;ri mid=(l+r)>>;solv(l,mid);solv(mid+,r);
int num1=,num2=,top1=,top2=,i=l,j=mid+;
for(j=mid+;j<=r;++j)
{
t2[++num2]=nod[j];
while(i<=mid && nod[i].y<nod[j].y)
{
t1[++num1]=nod[i];
while(top1 && stck1[top1].x<nod[i].x)--top1;
stck1[++top1]=nod[i];++i;
}
while(top2 && stck2[top2].x>nod[j].x)--top2;
stck2[++top2]=nod[j];
as+=top1-fd(stck2[top2-].y,top1);
}
while(i<=mid)t1[++num1]=nod[i++];
i=,j=;ri nw=l-;
while(i<=num1 && j<=num2)if(t1[i].y<t2[j].y)nod[++nw]=t1[i++];else nod[++nw]=t2[j++];
while(i<=num1)nod[++nw]=t1[i++];
while(j<=num2)nod[++nw]=t2[j++];
} int main()
{
freopen("4237.in","r",stdin);freopen("4237.out","w",stdout);
n=read();rp(i,,n)nod[i]=(node){read()+,st[i]=read()+};
sort(st+,st++n);rp(i,,n)nod[i].y=lb(nod[i].y);sort(nod+,nod++n,cmp);rp(i,,n)nod[i].x=i;
solv(,n);printf("%lld",as);
return ;
}
随机推荐
- iOS 获取一个类的所有方法
#import <objc/runtime.h> #import <objc/message.h> 需要导入运行时头文件和消息发送文件 - (void)runTests { u ...
- CNN网络改善的方法——池化
一个能降低卷积金字塔中特征图的空间维度,目前为止,我们通过调整步幅,将滤镜每次移动几个像素.图1 从而降低特征图的尺寸.这是降低图像采样率的一种非常有效的方法. 图1 它移除了很多信息,如果我们不采用 ...
- python 找出矩阵中非零数
- Mac 安装homebrew,pkgutil --pkgs列出安装包
Mac 安装homebrew Homebrew官网 http://brew.sh/index_zh-cn.html Homebrew是神马 Linux系统有个让人蛋疼的通病,软件包依赖,好在当前主流的 ...
- H3C SSH配置例子
- oracle用WHERE替代ORDER BY
ORDER BY 子句只在两种严格的条件下使用索引. ORDER BY中所有的列必须包含在相同的索引中并保持在索引中的排列顺序. ORDER BY中所有的列必须定义为非空. WHERE子句使用的索引和 ...
- Python基础知识汇总
1.执行脚本的两种方式 Python a.py 直接调用Python解释器执行文件 chomd +x a.py ./a.py #修改a.py文件的属性,为可执行,在用 ./ 执行 ...
- Python--day64--Bootstrap样式的使用
Bootstrap样式网址:https://v3.bootcss.com
- HDU 6623"Minimal Power of Prime"(数学)
传送门 •题意 给你一个大于 1 的正整数 n: 它可以分解成不同的质因子的幂的乘积的形式,问这些质因子的幂中,最小的幂是多少. •题解 定义 $ans$ 表示最终答案: ①如果 $ans \ge 5 ...
- 浅谈集合框架六——集合扩展:Arrays工具类、集合与数组相互转换方式;
最近刚学完集合框架,想把自己的一些学习笔记与想法整理一下,所以本篇博客或许会有一些内容写的不严谨或者不正确,还请大神指出.初学者对于本篇博客只建议作为参考,欢迎留言共同学习. 之前有介绍集合框架的体系 ...