不仅仅是双11大屏—Flink应用场景介绍
双11大屏
每年天猫双十一购物节,都会有一块巨大的实时作战大屏,展现当前的销售情况。
这种炫酷的页面背后,其实有着非常强大的技术支撑,而这种场景其实就是实时报表分析。
实时报表分析是近年来很多公司采用的报表统计方案之一,其中最主要的应用就是实时大屏展示。利用流式计算实时得出结果直接被推送到前端应用,实时显示出重要指标的变换情况。最典型的案例便是淘宝双十一活动,每年双十一购物节,除疯狂购物外,最引人注目的就是双十一大屏不停跳跃的成交总额。在整个计算链路中包括从天猫交易下单购买到数据采集,数据计算,数据校验,最终落到双十一大屏上展示的全链路时间压缩在5秒以内,顶峰计算性能高达数三十万笔订单/秒,通过多条链路流计算备份确保万无一失。
而在其他行业,企业也在构建自己的实时报表系统,让企业能够依托于自身的业务数据,快速提取出更多的数据价值,从而更好的服务于企业运行过程中。
而这种高性能,高可用的准确的流处理框架就非Flink莫属了。
Apache Flink是什么?
在当代数据量激增的时代,各种业务场景都有大量的业务数据产生,对于这些不断产生的数据应该如何进行有效的处理,成为当下大多数公司所面临的问题。Apache Flink 是一个开源的分布式,高性能,高可用,准确的流处理框架。支持实时流处理和批处理 。
Flink 就是近年来在开源社区不断发展的技术中的能够同时支持高吞吐、低延迟、高性能的分布式处理框架。
应用场景
在实际生产过程中,大量的数据不断的产生,例如金融交易数据、互联网订单数据、GPS定位数据、传感器信号、移动终端产生的数据、通信信号数据等,以及我们熟悉的网络流量监控,服务器产生的日志数据,这些数据最大的共同点就是实时从不同的数据源中产生,然后再传输到下游的分析系统。针对这些数据类型主要包括实时智能推荐,复杂事件处理,实施欺诈检测,实时数仓,与ETL类型、流数据分析类型、实时报表类型等实施业务场景,而Flink对于这些类型的场景都有着非常好的支持。
实时智能推荐
智能推荐会根据用户历史的购买行为,通过推荐算法训练模型,预测用户未来可能会购买的物品。对个人来说,推荐系统起着信息过滤的作用,对Web/App服务端来说,推荐系统起着满足用户个性化需求,提升用户满意度的作用。推荐系统本身也在飞速发展,除了算法越来越完善,对时延的要求也越来越苛刻和实时化。利用Flink流计算帮助用户构建更加实时的智能推荐系统,对用户行为指标进行实时计算,对模型进行实时更新,对用户指标进行实时预测,并将预测的信息推送给Web/App端,帮助用户获取想要的商品信息,另一方面也帮助企业提升销售额,创造更大的商业价值。
复杂事件处理
对于复杂事件处理,比较常见的集中于工业领域,例如对车载传感器,机械设备等实时故障检测,这些业务类型通常数据量都非常大,且对数据处理的时效性要求非常高。通过利用Flink提供的CEP进行时间模式的抽取,同时应用Flink的Sql进行事件数据的转换,在流式系统中构建实施规则引擎,一旦事件触发报警规则,便立即将告警结果通知至下游通知系统,从而实现对设备故障快速预警检测,车辆状态监控等目的。
实时欺诈检测
在金融领域的业务中,常常出现各种类型的欺诈行为,例如信用卡欺诈,信贷申请欺诈等,而如何保证用户和公司的资金安全,是近年来许多金融公司及银行共同面对的挑战。随着不法分子欺诈手段的不断升级,传统的反欺诈手段已经不足以解决目前所面临的问题。以往可能需要几个小时才能通过交易数据计算出用户的行为指标,然后通过规则判别出具有欺诈行为嫌疑的用户,再进行案件调查处理,在这种情况下资金可能早已被不法分子转移,从而给企业和用户造成大量的经济损失。而运用Flink流式计算技术能够在毫秒内就完成对欺诈行为判断指标的计算,然后实时对交易流水进行实时拦截,避免因为处理不及时而导致的经济损失。
实时数仓与ETL
结合离线数仓,通过利用流计算的诸多优势和Sql灵活的加工能力,对流式数据进行实时清洗、归并、结构化处理,为离线数仓进行补充和优化。另一方面结合实时数据ETL处理能力,利用有状态流式计算技术,可以尽可能降低企业由于在离线数据计算过程中调度逻辑的复杂度,高效快速的处理企业需要的统计结果,帮助企业更好地应用实时数据所分析出来的结果。
流数据分析
实时计算各类数据指标,并利用实时结果及时调整在线相关策略,在各类内容投放、无线智能推送领域有大量的应用。流式计算技术将数据分析场景实时化,帮助企业做到实时化分析Web应用或者App应用的各项指标,包括App版本分布情况,Crash检测和分布等,同时提供多维度用户行为分析支持日志自主分析,助力开发者实现基于大数据技术的精细化运营,提升产品质量和体验,增强用户黏性。
更多Flink相关博文,欢迎关注实时流式计算
不仅仅是双11大屏—Flink应用场景介绍的更多相关文章
- 【TOP100案例专访】当当网工程师林嘉琦谈双11大促经验及APM实践
导读:第七届TOP100全球软件案例研究峰会将于11月30日-12月3日在北京国家会议中心举办,本届峰会以“释放AI生产力 让组织向智能化演进”为开幕式主题,旨在推动企业在趋势下拥抱AI.探索和思考A ...
- 第四章 电商云化,4.2 集团AliDocker化双11总结(作者: 林轩、白慕、潇谦)
4.2 集团AliDocker化双11总结 前言 在基础设施方面,今年双11最大的变化是支撑双11的所有交易核心应用都跑在了Docker容器中.几十万Docker容器撑起了双11交易17.5万笔每秒的 ...
- 双11线上压测netty内存泄露
最近线上压测,机器学习模型第一次应用到线上经历双11大促.JSF微服务有报错 LEAK: ByteBuf.release() was not called before it's garbage-co ...
- [转帖]支撑双11每秒17.5万单事务 阿里巴巴对JVM都做了些什么?
支撑双11每秒17.5万单事务 阿里巴巴对JVM都做了些什么? https://mp.weixin.qq.com/s?__biz=MzA3OTg5NjcyMg==&mid=2661671930 ...
- 订单峰值激增 230%,Serverless 如何为世纪联华降本超 40%?|双11 云原生实践
作者 | 朱鹏 导读:2020 年 双11,世纪联华基于阿里云函数计算 (FC) 弹性扩容,应用于大促会场 SSR.线上商品秒杀.优惠券定点发放.行业导购.数据中台计算等多个场景,业务峰值 QPS 较 ...
- 商业智能(BI)可视化大屏的设计及使用原则
信息时代,数据是一种可贵的资源,我们可能经常听到的一句话就是:用数据说话.但是,在没有进行系统化整理之前,数据不过只是一串串冰冷的数字,我们很难从大量的数据中获取到有价值的信息.只有通过合适的可视化工 ...
- 阿里云体验有奖:使用PolarDB-X与Flink搭建实时数据大屏
体验简介 场景将提供一台配置了CentOS 8.5操作系统的ECS实例(云服务器).通过本教程的操作带您体验如何使用PolarDB-X与Flink搭建一个实时数据链路,模拟阿里巴巴双十一GMV大屏. ...
- 基于Filebeat+Kafka+Flink仿天猫双11实时交易额
1. 写在前面 在大数据实时计算方向,天猫双11的实时交易额是最具权威性的,当然技术架构也是相当复杂的,不是本篇博客的简单实现,因为天猫双11的数据是多维度多系统,实时粒度更微小的.当然在技术的总体架 ...
- 第八章 交互技术,8.4 Weex 双11会场大规模应用的秒开实战和稳定性保障(作者:鬼道)
8.4 Weex 双11会场大规模应用的秒开实战和稳定性保障 前言 Native 开发的诸多亮点中,流畅体验和系统调用是最多被提及的.流畅体验体现在页面滚动/动画的流畅性,背后是更好的内存管理和更接近 ...
随机推荐
- macbook Air安装OS系统,提示“请插入电源适配器”,实际已插电源却检测不到
在重做Mac系统时需要插电源是众所周知的,但在同意协议之后,选择安装盘下一步时提示“请插入电源适配器”??WTF! 明明电源已经插上了却检测不到......气绝 解决方案:按住组合件"shi ...
- 伪元素 before 和 after 各种妙用
大家可能对伪类和伪元素有点迷糊,在介绍具体用法之前,简单介绍下伪类和伪元素.伪类大家听的多了,伪元素可能听到的不是那么频繁,其实 CSS 对这两个是有区分的. 这里整理总结下: 有时你会发现伪类元素使 ...
- 20172018-acmicpc-southeastern-european-regional-programming-contest-seerc-2017-en A - Concerts
题意就是给一个字母序列a,以及一个另外一个字母序列b,你需要b中找到字母序列a,并且要求对于在b中的字母序列a,每个单词都需要满足相应的距离 其实很简单,我们利用DP[i][j]代表a已经匹配i个位置 ...
- 3、.net core 部署到IIS
1)下载对应的Hosting Bundle https://dotnet.microsoft.com/download/dotnet-core/2.2 2)VS发布项目,选择window平台环境 3 ...
- oracle SELECT子句中避免使用 ‘ * ‘
当你想在SELECT子句中列出所有的COLUMN时,使用动态SQL列引用 ‘*’ 是一个方便的方法. 不幸的是,这是一个非常低效的方法. 实际上,ORACLE在解析的过程中, 会将’*’ 依次转换成所 ...
- EL表达式中的empty和null
EL表达式中的empty和null 先说一下EL表达式中的null和empty区别,然后再说说最近在项目中出现的一个有趣的问题. EL中的null和empty都可用来判断值是否为空,但两者存在略微的区 ...
- Linux中ifcfg-eth0配置参数说明
ifcfg-eth0在/etc/sysconfig/network-scripts下, 其配置如下: DEVICE=物理设备名IPADDR=IP地址NETMASK=掩码值NETWORK=网络地址BRO ...
- 快速理解bootstrap,bagging,boosting,gradient boost-三个概念
1 booststraping:意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法. 其核心思想和基本步骤如下: (1 ...
- Flex AIR自定义Mobile的弹出框组件
做Flex Mobile开发的人应该知道,Flex为手机应用并没有提供弹出框组件,需要自定义. 通过查找文档.资料,我做出一个效果还算不错的弹出框组件,可以适用于手机设备上,不多讲,直接贴源码,相信对 ...
- java spring使用Jackson过滤
一.问题的提出. 项目使用Spring MVC框架,并用jackson库处理JSON和POJO的转换.在POJO转化成JSON时,希望动态的过滤掉对象的某些属性.所谓动态,是指的运行时,不同的cont ...