如何查看SparkSQL 生成的抽象语法树?
前言
在《Spark SQL内核剖析》书中4.3章节,谈到Catalyst体系中生成的抽象语法树的节点都是以Context来结尾,在ANLTR4以及生成的SqlBaseParser解析SQL生成,其源码部分就是语法解析,其生成的抽象语法树的节点都是ParserRuleContext的子类。
提出问题
ANLTR4解析SQL生成抽象语法树,最终这颗树长成什么样子,如何查看?
源码分析
测试示例
spark.sql("select id, count(name) from student group by id").show()
源码入口
SparkSession的sql 方法如下:
def sql(sqlText: String): DataFrame = {
// TODO 1. 生成LogicalPlan
// sqlParser 为 SparkSqlParser
val logicalPlan: LogicalPlan = sessionState.sqlParser.parsePlan(sqlText)
// 根据 LogicalPlan
val frame: DataFrame = Dataset.ofRows(self, logicalPlan)
frame // sqlParser
}
定位SparkSqlParser
入口源码涉及到SessionState这个关键类,其初始化代码如下:
lazy val sessionState: SessionState = {
parentSessionState
.map(_.clone(this))
.getOrElse {
// 构建 org.apache.spark.sql.internal.SessionStateBuilder
val state = SparkSession.instantiateSessionState(
SparkSession.sessionStateClassName(sparkContext.conf),
self)
initialSessionOptions.foreach { case (k, v) => state.conf.setConfString(k, v) }
state
}
}
org.apache.spark.sql.SparkSession$#sessionStateClassName 方法具体如下:
private def sessionStateClassName(conf: SparkConf): String = {
// spark.sql.catalogImplementation, 分为 hive 和 in-memory模式,默认为 in-memory 模式
conf.get(CATALOG_IMPLEMENTATION) match {
case "hive" => HIVE_SESSION_STATE_BUILDER_CLASS_NAME // hive 实现 org.apache.spark.sql.hive.HiveSessionStateBuilder
case "in-memory" => classOf[SessionStateBuilder].getCanonicalName // org.apache.spark.sql.internal.SessionStateBuilder
}
}
其中,这里用到了builder模式,org.apache.spark.sql.internal.SessionStateBuilder就是用来构建 SessionState的。在 SparkSession.instantiateSessionState 中有具体说明,如下:
/**
* Helper method to create an instance of `SessionState` based on `className` from conf.
* The result is either `SessionState` or a Hive based `SessionState`.
*/
private def instantiateSessionState(
className: String,
sparkSession: SparkSession): SessionState = {
try {
// org.apache.spark.sql.internal.SessionStateBuilder
// invoke `new [Hive]SessionStateBuilder(SparkSession, Option[SessionState])`
val clazz = Utils.classForName(className)
val ctor = clazz.getConstructors.head
ctor.newInstance(sparkSession, None).asInstanceOf[BaseSessionStateBuilder].build()
} catch {
case NonFatal(e) =>
throw new IllegalArgumentException(s"Error while instantiating '$className':", e)
}
}
其中,BaseSessionStateBuilder下面有两个主要实现,分别为 org.apache.spark.sql.hive.HiveSessionStateBuilder(hive模式) 和 org.apache.spark.sql.internal.SessionStateBuilder(in-memory模式,默认)
org.apache.spark.sql.internal.BaseSessionStateBuilder#build 方法,源码如下:
/**
* Build the [[SessionState]].
*/
def build(): SessionState = {
new SessionState(
session.sharedState,
conf,
experimentalMethods,
functionRegistry,
udfRegistration,
() => catalog,
sqlParser,
() => analyzer,
() => optimizer,
planner,
streamingQueryManager,
listenerManager,
() => resourceLoader,
createQueryExecution,
createClone)
}
SessionState中,包含了很多的参数,关键参数介绍如下:
conf:SparkConf对象,对SparkSession的配置
functionRegistry:FunctionRegistry对象,负责函数的注册,其内部维护了一个map对象用于维护注册的函数。
UDFRegistration:UDFRegistration对象,用于注册UDF函数,其依赖于FunctionRegistry
catalogBuilder: () => SessionCatalog:返回SessionCatalog对象,其主要用于管理SparkSession的Catalog
sqlParser: ParserInterface, 实际为 SparkSqlParser 实例,其内部调用ASTBuilder将SQL解析为抽象语法树
analyzerBuilder: () => Analyzer, org.apache.spark.sql.internal.BaseSessionStateBuilder.analyzer 自定义 org.apache.spark.sql.catalyst.analysis.Analyzer.Analyzer
optimizerBuilder: () => Optimizer, // org.apache.spark.sql.internal.BaseSessionStateBuilder.optimizer --> 自定义 org.apache.spark.sql.execution.SparkOptimizer.SparkOptimizer
planner: SparkPlanner, // org.apache.spark.sql.internal.BaseSessionStateBuilder.planner --> 自定义 org.apache.spark.sql.execution.SparkPlanner.SparkPlanner
resourceLoaderBuilder: () => SessionResourceLoader,返回资源加载器,主要用于加载函数的jar或资源
createQueryExecution: LogicalPlan => QueryExecution:根据LogicalPlan生成QueryExecution对象
parsePlan方法
SparkSqlParser没有该方法的实现,具体是现在其父类 AbstractSqlParser中,如下:
/** Creates LogicalPlan for a given SQL string. */
// TODO 根据 sql语句生成 逻辑计划 LogicalPlan
override def parsePlan(sqlText: String): LogicalPlan = parse(sqlText) { parser =>
val singleStatementContext: SqlBaseParser.SingleStatementContext = parser.singleStatement()
astBuilder.visitSingleStatement(singleStatementContext) match {
case plan: LogicalPlan => plan
case _ =>
val position = Origin(None, None)
throw new ParseException(Option(sqlText), "Unsupported SQL statement", position, position)
}
}
其中 parse 方法后面的方法是一个回调函数,它在parse 方法中被调用,如下:
org.apache.spark.sql.execution.SparkSqlParser#parse源码如下:
private val substitutor = new VariableSubstitution(conf) // 参数替换器
protected override def parse[T](command: String)(toResult: SqlBaseParser => T): T = {
super.parse(substitutor.substitute(command))(toResult)
}
其中,substitutor是一个参数替换器,用于把SQL中的参数都替换掉,继续看其父类AbstractSqlParser的parse 方法:
protected def parse[T](command: String)(toResult: SqlBaseParser => T): T = {
logDebug(s"Parsing command: $command")
// 词法分析
val lexer = new SqlBaseLexer(new UpperCaseCharStream(CharStreams.fromString(command)))
lexer.removeErrorListeners()
lexer.addErrorListener(ParseErrorListener)
lexer.legacy_setops_precedence_enbled = SQLConf.get.setOpsPrecedenceEnforced
// 语法分析
val tokenStream = new CommonTokenStream(lexer)
val parser = new SqlBaseParser(tokenStream)
parser.addParseListener(PostProcessor)
parser.removeErrorListeners()
parser.addErrorListener(ParseErrorListener)
parser.legacy_setops_precedence_enbled = SQLConf.get.setOpsPrecedenceEnforced
try {
try {
// first, try parsing with potentially faster SLL mode
parser.getInterpreter.setPredictionMode(PredictionMode.SLL)
// 使用 AstBuilder 生成 Unresolved LogicalPlan
toResult(parser)
}
catch {
case e: ParseCancellationException =>
// if we fail, parse with LL mode
tokenStream.seek(0) // rewind input stream
parser.reset()
// Try Again.
parser.getInterpreter.setPredictionMode(PredictionMode.LL)
toResult(parser)
}
}
catch {
case e: ParseException if e.command.isDefined =>
throw e
case e: ParseException =>
throw e.withCommand(command)
case e: AnalysisException =>
val position = Origin(e.line, e.startPosition)
throw new ParseException(Option(command), e.message, position, position)
}
}
在这个方法中调用ANLTR4的API将SQL转换为AST抽象语法树,然后调用 toResult(parser) 方法,这个 toResult 方法就是parsePlan 方法的回调方法。
截止到调用astBuilder.visitSingleStatement 方法之前, AST抽象语法树已经生成。
打印生成的AST
修改源码
下面,看 astBuilder.visitSingleStatement 方法:
override def visitSingleStatement(ctx: SingleStatementContext): LogicalPlan = withOrigin(ctx) {
val statement: StatementContext = ctx.statement
printRuleContextInTreeStyle(statement, 1)
// 调用accept 生成 逻辑算子树AST
visit(statement).asInstanceOf[LogicalPlan]
}
在使用访问者模式访问AST节点生成UnResolved LogicalPlan之前,我定义了一个方法用来打印刚解析生成的抽象语法树, printRuleContextInTreeStyle 代码如下:
/**
* 树形打印抽象语法树
*/
private def printRuleContextInTreeStyle(ctx: ParserRuleContext, level:Int): Unit = {
val prefix:String = "|"
val curLevelStr: String = "-" * level
val childLevelStr: String = "-" * (level + 1)
println(s"${prefix}${curLevelStr} ${ctx.getClass.getCanonicalName}")
val children: util.List[ParseTree] = ctx.children
if( children == null || children.size() == 0) {
return
}
children.iterator().foreach {
case context: ParserRuleContext => printRuleContextInTreeStyle(context, level + 1)
case _ => println(s"${prefix}${childLevelStr} ${ctx.getClass.getCanonicalName}")
}
}
三种SQL打印示例
SQL示例1(带where)
select name from student where age > 18
其生成的AST如下:
|- org.apache.spark.sql.catalyst.parser.SqlBaseParser.StatementDefaultContext
|-- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryContext
|--- org.apache.spark.sql.catalyst.parser.SqlBaseParser.SingleInsertQueryContext
|---- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryTermDefaultContext
|----- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryPrimaryDefaultContext
|------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.QuerySpecificationContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QuerySpecificationContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.NamedExpressionSeqContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.NamedExpressionContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ExpressionContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.PredicatedContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ValueExpressionDefaultContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.ColumnReferenceContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IdentifierContext
|-------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|--------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.FromClauseContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.FromClauseContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.RelationContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.TableNameContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.TableIdentifierContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IdentifierContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.TableAliasContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QuerySpecificationContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.PredicatedContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ComparisonContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ValueExpressionDefaultContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ColumnReferenceContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IdentifierContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ComparisonOperatorContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ComparisonOperatorContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ValueExpressionDefaultContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ConstantDefaultContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.NumericLiteralContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.IntegerLiteralContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IntegerLiteralContext
|---- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryOrganizationContext
SQL示例2(带排序)
select name from student where age > 18 order by id desc
其生成的AST如下:
|- org.apache.spark.sql.catalyst.parser.SqlBaseParser.StatementDefaultContext
|-- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryContext
|--- org.apache.spark.sql.catalyst.parser.SqlBaseParser.SingleInsertQueryContext
|---- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryTermDefaultContext
|----- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryPrimaryDefaultContext
|------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.QuerySpecificationContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QuerySpecificationContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.NamedExpressionSeqContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.NamedExpressionContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ExpressionContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.PredicatedContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ValueExpressionDefaultContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.ColumnReferenceContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IdentifierContext
|-------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|--------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.FromClauseContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.FromClauseContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.RelationContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.TableNameContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.TableIdentifierContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IdentifierContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.TableAliasContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QuerySpecificationContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.PredicatedContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ComparisonContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ValueExpressionDefaultContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ColumnReferenceContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IdentifierContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ComparisonOperatorContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ComparisonOperatorContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ValueExpressionDefaultContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ConstantDefaultContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.NumericLiteralContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.IntegerLiteralContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IntegerLiteralContext
|---- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryOrganizationContext
|----- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryOrganizationContext
|----- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryOrganizationContext
|----- org.apache.spark.sql.catalyst.parser.SqlBaseParser.SortItemContext
|------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.ExpressionContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.PredicatedContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ValueExpressionDefaultContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ColumnReferenceContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IdentifierContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.SortItemContext
SQL示例2(带分组)
select id, count(name) from student group by id
其生成的AST如下:
|- org.apache.spark.sql.catalyst.parser.SqlBaseParser.StatementDefaultContext
|-- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryContext
|--- org.apache.spark.sql.catalyst.parser.SqlBaseParser.SingleInsertQueryContext
|---- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryTermDefaultContext
|----- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryPrimaryDefaultContext
|------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.QuerySpecificationContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QuerySpecificationContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.NamedExpressionSeqContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.NamedExpressionContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ExpressionContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.PredicatedContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ValueExpressionDefaultContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.ColumnReferenceContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IdentifierContext
|-------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|--------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.NamedExpressionSeqContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.NamedExpressionContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ExpressionContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.PredicatedContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ValueExpressionDefaultContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.FunctionCallContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QualifiedNameContext
|-------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IdentifierContext
|--------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|---------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.FunctionCallContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ExpressionContext
|-------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.PredicatedContext
|--------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ValueExpressionDefaultContext
|---------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ColumnReferenceContext
|----------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IdentifierContext
|------------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|------------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.FunctionCallContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.FromClauseContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.FromClauseContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.RelationContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.TableNameContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.TableIdentifierContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.IdentifierContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.TableAliasContext
|------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.AggregationContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.AggregationContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.AggregationContext
|-------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ExpressionContext
|--------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.PredicatedContext
|---------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ValueExpressionDefaultContext
|----------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.ColumnReferenceContext
|------------ org.apache.spark.sql.catalyst.parser.SqlBaseParser.IdentifierContext
|------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|-------------- org.apache.spark.sql.catalyst.parser.SqlBaseParser.UnquotedIdentifierContext
|---- org.apache.spark.sql.catalyst.parser.SqlBaseParser.QueryOrganizationContext
总结
在本篇文章中,主要从测试代码出发,到如何调用ANTLR4解析SQL得到生成AST,并且修改了源码来打印这个AST树。尽管现在看来,使用ANTLR解析SQL生成AST是一个black box,但对于Spark SQL来说,其后续流程的输入已经得到。
如何查看SparkSQL 生成的抽象语法树?的更多相关文章
- 编译器开发系列--Ocelot语言1.抽象语法树
从今天开始研究开发自己的编程语言Ocelot,从<自制编译器>出发,然后再自己不断完善功能并优化. 编译器前端简单,就不深入研究了,直接用现成的一款工具叫JavaCC,它可以生成抽象语法树 ...
- javascript编写一个简单的编译器(理解抽象语法树AST)
javascript编写一个简单的编译器(理解抽象语法树AST) 编译器 是一种接收一段代码,然后把它转成一些其他一种机制.我们现在来做一个在一张纸上画出一条线,那么我们画出一条线需要定义的条件如下: ...
- 理解Babel是如何编译JS代码的及理解抽象语法树(AST)
Babel是如何编译JS代码的及理解抽象语法树(AST) 1. Babel的作用是? 很多浏览器目前还不支持ES6的代码,但是我们可以通过Babel将ES6的代码转译成ES5代码,让所有的浏览器都 ...
- JavaScript的工作原理:解析、抽象语法树(AST)+ 提升编译速度5个技巧
这是专门探索 JavaScript 及其所构建的组件的系列文章的第 14 篇. 如果你错过了前面的章节,可以在这里找到它们: JavaScript 是如何工作的:引擎,运行时和调用堆栈的概述! Jav ...
- AST抽象语法树 Javascript版
在javascript世界中,你可以认为抽象语法树(AST)是最底层. 再往下,就是关于转换和编译的"黑魔法"领域了. 现在,我们拆解一个简单的add函数 function add ...
- AST抽象语法树
抽象语法树简介 (一)简介 抽象语法树(abstract syntax code,AST)是源代码的抽象语法结构的树状表示,树上的每个节点都表示源代码中的一种结构,这所以说是抽象的,是因为抽象语法树并 ...
- 【Static Program Analysis - Chapter 2】 代码的表征之抽象语法树
抽象语法树:AbstractSyntaxTrees 定义(wiki): 在计算机科学中,抽象语法树(abstract syntax tree或者缩写为AST),或者语法树(syntax tree),是 ...
- 抽象语法树(AST)
AST描述 在计算机科学中,抽象语法树(AST)或语法树是用编程语言编写的源代码的抽象语法结构的树表示.树的每个节点表示在源代码中出现的构造.语法是“抽象的”,因为它不代表真实语法中出现的每个细节,而 ...
- Babel(抽象语法树,又称AST)
文章:https://juejin.im/post/5a9315e46fb9a0633a711f25 https://github.com/jamiebuilds/babel-handbook/blo ...
随机推荐
- echarts设置柱状图颜色渐变及柱状图粗细大小
series: [ { name: '值', type: 'bar', stack: '总量', //设置柱状图大小 barWidth : 20, //设置柱状图渐变颜色 itemStyle: { n ...
- 人群密度检测MCNN+CSRnet
MCNN(简单理解): 三列卷积神经网络,分别为大中小三种不同尺度的卷积核,表示为L列(使用大尺度卷积核: 9*9, 7*7, 7*7,7*7), M(使用中等尺度卷积核: 7*7, 5*5, 5*5 ...
- flask部署深度学习模型
flask部署深度学习模型 作为著名Python web框架之一的Flask,具有简单轻量.灵活.扩展丰富且上手难度低的特点,因此成为了机器学习和深度学习模型上线跑定时任务,提供API的首选框架. 众 ...
- 依赖注入之IConfiguration
public class Startup { public Startup(IConfiguration configuration) { Configuration = configuration; ...
- Redis(二):redis命令构建及关键属性解析
上一篇文章,我们从框架层面,主要介绍了redis的启动过程,以及主要的命令处理流程逻辑.这些更多的都是些差不多的道理,而要细了解redis,则需要更细节的东西. 今天我们稍微内围的角度,来看看几个命令 ...
- 五个常见 AI 开发库
上一篇文章已经写过了,人工智能的发展不可谓不曲折,三起两落,不同的历史阶段,主流的研究方法不一样,开始时的 if-else 结构,简单的逻辑判断字符串匹配,到后期的穷举计算等,慢慢发展到现在的大数据与 ...
- nested exception is org.springframework.context.ApplicationContextException: Unable to start ServletWebServerApplicationContext due to missing ServletWebServerFactory bean.报错解决
近期在学springboot,学的时候遇到这个错,网上查了好多,改了不行,后来发现自己的配置类没有加@SpringBootApplication注解 Exception encountered dur ...
- 迈向Angular 2
目录 序言 XV第1章 Angular 2快速上手 1Web的进化——新框架时代 2ECMAScript的进化 2Web Component 3WebWorker 4从AngularJS 1.x中学到 ...
- dotnet restore 初次运行 这个 指令 会安装 特别多的 4.0.0 或者 4.1 的 rc2-24027的 东东 这些东西。
- Kindle Unlimited 上线的最热书单
Kindle 也给出了一份,到现在为止,在 Kindle Unlimited 上线的最热书单: 1.岛上书店2.一个人的朝圣3.自控力4.嫌疑人 X 的献身5.沉默的大多数(王小波文集)6.跟任何人都 ...