题意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$。

开始开心(自闭)化简:

$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$

=$\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{d}[gcd(i,j)==d]$

=$\sum_{d=1}^{n}\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{d}\rfloor}ijd[gcd(i,j)==1]$

=$\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\mu(i)i^2S({\lfloor \frac{n}{id}\rfloor})S({\lfloor \frac{m}{id}\rfloor}),S(n)=(n+1)*n/2$

=$\sum_{T=1}^{n}S({\lfloor \frac{n}{T}\rfloor})S({\lfloor \frac{m}{T}\rfloor})\sum_{d|T}d(\frac{T}{d})^2\mu(\frac{T}{d})$

=$\sum_{T=1}^{n}S({\lfloor \frac{n}{T}\rfloor})S({\lfloor \frac{m}{T}\rfloor})T\sum_{d|T}(\frac{T}{d})\mu(\frac{T}{d})$

令$F(T)=T\sum_{d|T}(\frac{T}{d})\mu(\frac{T}{d})$

只需要预处理F的前缀和,前面整除分块问题就解决了。

$F(1)=1,F(p^c)=\mu(1)*1+\mu(p)*p=1-p$

可以知道F是一个积性函数,对T进行质因数分解,即可求得F(T),可以在筛质数的时候进行求解,具体看代码。

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e7+;
const int MD=;
bool p[N];
int pri[N],f[N],tot;
void init() {
f[]=;
for(int i=;i<N;i++) {
if(!p[i]) pri[tot++]=i,f[i]=-i+MD;
for(int j=;j<tot&&i*pri[j]<N;j++) {
p[i*pri[j]]=true;
if(i%pri[j]==) {
f[i*pri[j]]=f[i];
break;
}
else f[i*pri[j]]=1LL*f[i]*f[pri[j]]%MD;
}
}
for(int i=;i<N;i++) f[i]=1LL*f[i]*i%MD;
for(int i=;i<N;i++) f[i]=(f[i]+f[i-])%MD;
}
int cal(int x) {
return 1LL*x*(x+)/%MD;
}
int main() {
init();
int n,m;
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
int ans=;
for(int l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
ans=(ans+1LL*(f[r]-f[l-]+MD)*cal(n/l)%MD*cal(m/l)%MD)%MD;
}
printf("%d\n",ans);
return ;
}

洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)的更多相关文章

  1. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...

  2. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

  3. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告

    [国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...

  4. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...

  5. P1829 [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演

    又一道...分数和取模次数成正比$qwq$ 求:$\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)$ 原式 $=\sum_{i=1}^N\sum_{j=1}^M\frac{i*j}{g ...

  6. 洛谷P1829 [国家集训队]Crash的数字表格

    题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, ...

  7. [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演

    ---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...

  8. luoguP1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题意 注:默认\(n\leqslant m\). 所求即为:\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 因为\(i*j=\gcd(i, ...

  9. P1829 [国家集训队]Crash的数字表格 / JZPTAB

    推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...

随机推荐

  1. 015-WebDriver API

    1. 从定位元素开始 8种元素定位方法 id find_element_by_id( ) name find_element_by_name( ) tag find_element_by_tag_na ...

  2. Python学习之列表--自动超市购物车

    效果图: 实现代码: menu = [0,5000,500,9000,3000,30,50,7000,70,40]name = [0,"iphone","bicycle& ...

  3. bzoj 3743 [Coci2015]Kamp——树形dp+换根

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...

  4. TZ_08_maven把第三方 jar 包放入本地仓库或私服

    --安装第三方jar包到本地仓库 需求:首先下载jar包并且找到对应的 -DgroupId=? -DartifactId=? -Dversion=? -Dpackaging=jar  -Dfile=j ...

  5. oracle习题练习-表空间-用户-表-约束

    题一 1.       创建名字为hy_tablespace的表空间,默认大小为10M;@@ 2.       创建一个用户,用户名以自己名字命名,并指定命名空间为hy_tablespace;@@@@ ...

  6. Redhat/Fedora 网络接口的配置文件和网络接口专用配置工具

    在Redhat/Fedora 中,与乙太网卡相关的配置文件位于 /etc/sysconfig/network-scripts目录中,比如 ifcfg-eth0.ifcfg-eth1 .... .... ...

  7. 转:解决Onethink上传视频的问题 超棒的解决方案

    用过Onethink的都知道,它是不能上传视频的. 有人想到用上传附件的方式上传视频,但是结果……就是提示没有上传文件. 要是正常上传个一两兆的图片啊,压缩文件什么的还是可以的. 所以,重点来了 怎么 ...

  8. JS常用属性方法大全

    1. 输出语句 : document.write(""); 2.JS 中的注释为 : // 3. 传统的 HTML 文档顺序是 : document->html->(h ...

  9. Django项目:CRM(客户关系管理系统)--03--02PerfectCRM创建ADMIN页面01

    八.CRM项目创建king_admin python.exe manage.py startapp king_admin 'king_admin', 九.CRM项目分发URL "" ...

  10. Hdu 1498 二分匹配

    50 years, 50 colors Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...