洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$。
开始开心(自闭)化简:
$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$
=$\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{d}[gcd(i,j)==d]$
=$\sum_{d=1}^{n}\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{d}\rfloor}ijd[gcd(i,j)==1]$
=$\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\mu(i)i^2S({\lfloor \frac{n}{id}\rfloor})S({\lfloor \frac{m}{id}\rfloor}),S(n)=(n+1)*n/2$
=$\sum_{T=1}^{n}S({\lfloor \frac{n}{T}\rfloor})S({\lfloor \frac{m}{T}\rfloor})\sum_{d|T}d(\frac{T}{d})^2\mu(\frac{T}{d})$
=$\sum_{T=1}^{n}S({\lfloor \frac{n}{T}\rfloor})S({\lfloor \frac{m}{T}\rfloor})T\sum_{d|T}(\frac{T}{d})\mu(\frac{T}{d})$
令$F(T)=T\sum_{d|T}(\frac{T}{d})\mu(\frac{T}{d})$
只需要预处理F的前缀和,前面整除分块问题就解决了。
$F(1)=1,F(p^c)=\mu(1)*1+\mu(p)*p=1-p$
可以知道F是一个积性函数,对T进行质因数分解,即可求得F(T),可以在筛质数的时候进行求解,具体看代码。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e7+;
const int MD=;
bool p[N];
int pri[N],f[N],tot;
void init() {
f[]=;
for(int i=;i<N;i++) {
if(!p[i]) pri[tot++]=i,f[i]=-i+MD;
for(int j=;j<tot&&i*pri[j]<N;j++) {
p[i*pri[j]]=true;
if(i%pri[j]==) {
f[i*pri[j]]=f[i];
break;
}
else f[i*pri[j]]=1LL*f[i]*f[pri[j]]%MD;
}
}
for(int i=;i<N;i++) f[i]=1LL*f[i]*i%MD;
for(int i=;i<N;i++) f[i]=(f[i]+f[i-])%MD;
}
int cal(int x) {
return 1LL*x*(x+)/%MD;
}
int main() {
init();
int n,m;
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
int ans=;
for(int l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
ans=(ans+1LL*(f[r]-f[l-]+MD)*cal(n/l)%MD*cal(m/l)%MD)%MD;
}
printf("%d\n",ans);
return ;
}
洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)的更多相关文章
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
又一道...分数和取模次数成正比$qwq$ 求:$\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)$ 原式 $=\sum_{i=1}^N\sum_{j=1}^M\frac{i*j}{g ...
- 洛谷P1829 [国家集训队]Crash的数字表格
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, ...
- [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...
- luoguP1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意 注:默认\(n\leqslant m\). 所求即为:\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 因为\(i*j=\gcd(i, ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB
推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...
随机推荐
- python实例5-表格打印
编写一个名为printTable()的函数,它接受字符串的列表的列表,将它显示在组织良好的表格中,每列右对齐.假定所有内层列表都包含同样数目的字符串.例如,该值可能看起来像这样: table_data ...
- http协议与servletl理解
协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规则,超文本传输协议(HTTP)是一种通信协议,它允许将超文本标记语言(HTML)文档从Web服务器传送到客户端的浏览器 s ...
- Django项目:CRM(客户关系管理系统)--44--36PerfectCRM实现King_admin密码修改
# king_urls.py # ————————02PerfectCRM创建ADMIN页面———————— from django.conf.urls import url from king_ad ...
- 20190725-Silly
$ \mathsf{You\ think\ about\ what\ you\ want\ because\ you're\ just\ alive}$ ——C418-Alive 我不能yuanlia ...
- php用mysql方式连接数据库出现Deprecated报错
以上是用php5.5 连接mysql数据库时报的错. 于是我用php5.4 连接正常没有报错. 这与mysql版本无关系,php 5.x版本,如5.2.5.3.5.4.5.5,怕跟不上时代,新的服务器 ...
- SpringBoot+Shiro+mybatis整合实战
SpringBoot+Shiro+mybatis整合 1. 使用Springboot版本2.0.4 与shiro的版本 引入springboot和shiro依赖 <?xml version=&q ...
- Spring AOP(转)
原文:Spring实现AOP的4种方式 Spring AOP 详解 Spring实现AOP的4种方式 先了解AOP的相关术语:1.通知(Advice):通知定义了切面是什么以及何时使用.描述了切面要完 ...
- 关于display:flex;兼容写法
display: -moz-box; /* Firefox */ display: -ms-flexbox; /* IE10 */ display: -webkit-box; /* Safari */ ...
- Eclipse-搭建springboot项目报错
Eclipse Maven pom报错: org.apache.maven.archiver.MavenArchiver.getManifest(org.apache.maven.project.Ma ...
- Orleans 整体介绍
背景 Orleans 是微软开源的Actor模型开发框架. Actor模型 此模型解决了并发编程时对资源竞争使用的问题,将对同一个业务数据的访问从并行变为串行执行,降低了多线程编程的难度,使普通编程人 ...