Problem: high-dimensional time series forecasting

?? what is "high-dimensional" time series forecasting?

one dimension for each individual time-series. n个time series为n维。

A need for exploiting global pattern and coupling them with local calibration校准 for better prediction.

However, most are one-dimensional forecasting.

one-dimensional forecasting VS high-dimensional forecasting:

1. a single dimension forecast mainly depends on past values from the same dimension.

DeepGLO: a deep forecasting model which thinks globally and acts locally.

A hybrid model: a global matrix factorization model regularized by a temporal convolution network + a temporal network that capture local properties of each time-series and associated covariates相关协变量.

Environment: different time series can have vastly different scales without a priori normalization or rescaling.

Introduction:

需求:比如零售商,one may be interested in the future daily demands for all items in a category. This leads to a problem of forecasting n time-series.

Traditional methods: focus on one time-series or a small number of time-series at a time.

AR, ARIMA, exponential smoothing and so on.

?? how to share temporal patterns in the whole data-set while training and prediction?

RNN - sequential modeling; and suffer from the gradient vanishing/ exploding problems.

LSTM 解决了上述问题。

Wavenet model: temporal convolutions/ causal convolutions.

Temporal convolution has been recently used, however, they still have two important shortcomings:

1. hard to train on data-sets that have wide variation in scales.

2. even though these deep models are trained on the entire data-set, during prediction the models only focus on local past data. i.e only the past data of a time-series is used for predicting the future of that time-series.

global properties. take in multiple time-series in the input layer thus capturing global properties.

PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting的更多相关文章

  1. A Deep Neural Network Approach To Speech Bandwidth Expansion

    题名:一种用于语音带宽扩展的深度神经网络方法 作者:Kehuang Li:Chin-Hui Lee 2015年出来的 摘要 本文提出了一种基于深度神经网络(DNN)的语音带宽扩展(BWE)方法.利用对 ...

  2. 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement

    论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...

  3. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  4. What are the advantages of ReLU over sigmoid function in deep neural network?

    The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...

  5. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

  6. Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?

    Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...

  7. 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification

    This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...

  8. 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie

    Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...

  9. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

随机推荐

  1. 基于Struts2开发校园二手购物商城源码

    开发环境: Windows操作系统开发工具: MyEclipse+Jdk+Tomcat+MySQL数据库 次项目分为管理员和普通用户两种角色 运行效果图 源码及原文链接:https://javadao ...

  2. Android进程调度之adj算法

    copy from : http://gityuan.com/2016/08/07/android-adj/ 一.概述 提到进程调度,可能大家首先想到的是Linux cpu调度算法,进程优先级之类概念 ...

  3. echarts配置环形饼图的参数,以及牵引线显示百分比,中间数据

    最近项目有多处是用echarts的,有环形图,折线图,饼图,总结了一下. 本次主要讲环形图,折线图在下期. 这个是最终的效果图.下面附上代码 //三种占比 var myChartType = echa ...

  4. C#中StreamReader类读取文件使用示例

    C#中StreamReader类读取文件使用示例 1.需要导入的命名空间是:System.IO; 2.操作的是字符,所以打开的是文本文件. 常用属性:   CurrentEncoding:对象正在使用 ...

  5. HDU-1166 敌兵布阵 (树状数组模板题——单点更新,区间求和)

    题目链接 AC代码: #include<iostream> #include<cstdio> #include<cstring> #include<algor ...

  6. windows系统中如何删除文件路径过长的文件

    Q:通常在使用npm安装包后,路径会变的非常的长,有时候无法手动删除文件: 这个时候可以选中文件点击>添加文件到压缩文件,在弹出出来的框中勾选 压缩后删除原文件,>最后删除压缩包

  7. Git 尝试

    1,下载Git 2,安装GIt 3,config : git config --global user.name "mxb" git config --global user.em ...

  8. jQuery---each方法

    each方法 each方法 //each方法 $("li").each(function (index, element) { $(element).css("opaci ...

  9. nginx 反向代理及 https 证书配置

    nginx 反向代理及 https 证书配置 author: yunqimg(ccxtcxx0) 1. 编译安装nginx 从官网下载 nginx源码, 并编译安装. ./configure --pr ...

  10. equals和==的使用

    1.equals的使用: 引用数据类型的比较:通常情况下比较的是引用数据类型下的栈中的地址,但当你重写了equals方法后就不一定了 User user1=new User("tom&quo ...