PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting
Problem: high-dimensional time series forecasting
?? what is "high-dimensional" time series forecasting?
one dimension for each individual time-series. n个time series为n维。
A need for exploiting global pattern and coupling them with local calibration校准 for better prediction.
However, most are one-dimensional forecasting.
one-dimensional forecasting VS high-dimensional forecasting:
1. a single dimension forecast mainly depends on past values from the same dimension.
DeepGLO: a deep forecasting model which thinks globally and acts locally.
A hybrid model: a global matrix factorization model regularized by a temporal convolution network + a temporal network that capture local properties of each time-series and associated covariates相关协变量.
Environment: different time series can have vastly different scales without a priori normalization or rescaling.
Introduction:
需求:比如零售商,one may be interested in the future daily demands for all items in a category. This leads to a problem of forecasting n time-series.
Traditional methods: focus on one time-series or a small number of time-series at a time.
AR, ARIMA, exponential smoothing and so on.
?? how to share temporal patterns in the whole data-set while training and prediction?
RNN - sequential modeling; and suffer from the gradient vanishing/ exploding problems.
LSTM 解决了上述问题。
Wavenet model: temporal convolutions/ causal convolutions.
Temporal convolution has been recently used, however, they still have two important shortcomings:
1. hard to train on data-sets that have wide variation in scales.
2. even though these deep models are trained on the entire data-set, during prediction the models only focus on local past data. i.e only the past data of a time-series is used for predicting the future of that time-series.
global properties. take in multiple time-series in the input layer thus capturing global properties.
PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting的更多相关文章
- A Deep Neural Network Approach To Speech Bandwidth Expansion
题名:一种用于语音带宽扩展的深度神经网络方法 作者:Kehuang Li:Chin-Hui Lee 2015年出来的 摘要 本文提出了一种基于深度神经网络(DNN)的语音带宽扩展(BWE)方法.利用对 ...
- 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement
论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...
- XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...
- What are the advantages of ReLU over sigmoid function in deep neural network?
The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...
- 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx
- Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?
Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...
- 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification
This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...
- 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie
Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...
- 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...
随机推荐
- SAP 对HU做货物移动报错-Only 0 serial numbers entered instead of 30 -
SAP 对HU做货物移动报错-Only 0 serial numbers entered instead of 30 - 元旦刚过,就收到客户的业务人员报错说,当其对HU做转库(同一个公司代码下工厂到 ...
- Android9.0 Settings 修改踩坑记录
问题现象 上图展示的很清楚,当系统语言为中文时,PreferenceScreen 中的折叠项 summary 描述重复显示的 bug,系统语言为英文时正常. 修改历程 先搜索 当前显示了 字符串,还真 ...
- 2020软件工程作业01 Deadline: 2020/03/07 20:00pm
1.建立博客 https://github.com/smithLIUandhisbaby 20177572 https://www.cnblogs.com/smith324/ 2.回顾——我的初心 对 ...
- 重构与动态为angularjs栏位赋值或获取值
先来看下面一段html: 这个ng-model名称带有一定的规律带有序号. 先来实现数据绑定,从数据取到数据后,为ng-model绑定相对应的值: var c = response.data $sco ...
- HTML基础标签图片文本超链接列表表格介绍
1.HTML基础标签图片常见代码形式<img src="图片路径地址" alt="属性名" title="占位符">常见的图片格 ...
- 拍摄UFP 单一职责原则
3.1 新手机 3.2 拍摄 3.3 没用的东西 3.4 单一职责原则 就一个类而言,应该仅有一个引起它变化的原因, 3.5 方块游戏的设计 如果一个类承担的职责过多,就等于把这些职责耦合在一起,一个 ...
- opencv —— remap 重映射
重映射的概念 重映射,就是把一幅图像中某位置的像素放置到另一个图片指定位置的过程. 实现重映射:remap 函数 将图像进行重映射几何变换,基于的公式为:dst (x, y) = src ( mapx ...
- C#MVC实现为雇员配置角色(完整详细+数据库)
数据库创建“用户表”“角色表”“用户角色关系表” create table roles ( RId int identity, RName varchar(), Remark varchar() ) ...
- P2853 [USACO06DEC]牛的野餐Cow Picnic
------------------------- 长时间不写代码了,从学校中抽身出来真的不容易啊 ------------------------ 链接:Miku ----------------- ...
- 如何在vue-cli中使用vuex(配置成功
前言 众所周知,vuex 是一个专为 vue.js 应用程序开发的状态管理模式,在构建一个中大型单页应用中使用vuex可以帮助我们更好地在组件外部管理状态.而vue-cli是vue的官方脚手架,它能帮 ...