PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting
Problem: high-dimensional time series forecasting
?? what is "high-dimensional" time series forecasting?
one dimension for each individual time-series. n个time series为n维。
A need for exploiting global pattern and coupling them with local calibration校准 for better prediction.
However, most are one-dimensional forecasting.
one-dimensional forecasting VS high-dimensional forecasting:
1. a single dimension forecast mainly depends on past values from the same dimension.
DeepGLO: a deep forecasting model which thinks globally and acts locally.
A hybrid model: a global matrix factorization model regularized by a temporal convolution network + a temporal network that capture local properties of each time-series and associated covariates相关协变量.
Environment: different time series can have vastly different scales without a priori normalization or rescaling.
Introduction:
需求:比如零售商,one may be interested in the future daily demands for all items in a category. This leads to a problem of forecasting n time-series.
Traditional methods: focus on one time-series or a small number of time-series at a time.
AR, ARIMA, exponential smoothing and so on.
?? how to share temporal patterns in the whole data-set while training and prediction?
RNN - sequential modeling; and suffer from the gradient vanishing/ exploding problems.
LSTM 解决了上述问题。
Wavenet model: temporal convolutions/ causal convolutions.
Temporal convolution has been recently used, however, they still have two important shortcomings:
1. hard to train on data-sets that have wide variation in scales.
2. even though these deep models are trained on the entire data-set, during prediction the models only focus on local past data. i.e only the past data of a time-series is used for predicting the future of that time-series.
global properties. take in multiple time-series in the input layer thus capturing global properties.
PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting的更多相关文章
- A Deep Neural Network Approach To Speech Bandwidth Expansion
题名:一种用于语音带宽扩展的深度神经网络方法 作者:Kehuang Li:Chin-Hui Lee 2015年出来的 摘要 本文提出了一种基于深度神经网络(DNN)的语音带宽扩展(BWE)方法.利用对 ...
- 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement
论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...
- XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...
- What are the advantages of ReLU over sigmoid function in deep neural network?
The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...
- 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx
- Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?
Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...
- 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification
This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...
- 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie
Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...
- 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...
随机推荐
- Linux学习Day5:Vim编辑器、配置网卡、配置Yum软件仓库
今天首先学习Vim编辑器的使用,通过它可以对Linux系统的文件进行编写和修改.在Linux系统中一切都是文件,所以熟练掌握Vim编辑器的使用十分重要.最后通过配置主机网卡的实验,来加深Vim编辑器中 ...
- 仁和药业顺利出局,布局地产万科A
仁和药业布局到第二单,被止盈了,盈利大约1.1%.这几日地产行业回调明显,所以布局了万科A. 资金量W11.8 建仓价格28.6 加仓系数1.5 加仓间隔2.70% 总盈利比6.50% 期待吧!
- LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS
这种图论问题都挺考验小思维的. 首先,我们把从 $x$ 连出去两条边的都合并了. 然后再去合并从 $x$ 连出去一条原有边与一条新边的情况. 第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可 ...
- PMP--0. 前言(闲言)
先说一句话给未来的自己:你一定会感谢你现在的努力,当你回看时,记得带着现在的心境和心愿.未来更好的明天. --2019.12.1禾木留 今天是正式发布的时间--2020.01.01,听着新年快乐的祝福 ...
- Windows2008R2 一键安全优化脚本
::author vim ::QQ 82996821 ::filename Windows2008R2_safe_auto_set.bat :start @echo off color 0a ...
- The Ether 靶场
0x01 首先对靶场进行端口扫描 发现只开启了80端口和22端口 0x02 目录扫描 访问了几个目录并没有什么发现 0x03 访问主页几个网站链接 发现了一个疑似文件包含的漏洞 0x04 抓包进行分析 ...
- PERC H310 配置详细步骤【阵列RAID创建】【阵列恢复】【阵列池创建】
机器配置: HP PRO6300 二手淘的201912,HP的主板芯片Intel Q75芯片组,集成显卡(集成显卡与H310阵列卡冲突),CPU Intel I5 3450 [raid5阵列创建] 1 ...
- python——面向对象,继承
"""继承:子类继承父类1.单继承,多继承2. 子类调用或重用父类的同名属性和方法3. 多层4.私有属性和私有方法class 类名(object<父类>)&q ...
- XSS跨站测试代码
'><script>alert(document.cookie)</script>='><script>alert(document.cookie)&l ...
- 『后缀自动机入门 SuffixAutomaton』
本文的图片材料多数来自\(\mathrm{hihocoder}\)中详尽的\(SAM\)介绍,文字总结为原创内容. 确定性有限状态自动机 DFA 首先我们要定义确定性有限状态自动机\(\mathrm{ ...