Problem: high-dimensional time series forecasting

?? what is "high-dimensional" time series forecasting?

one dimension for each individual time-series. n个time series为n维。

A need for exploiting global pattern and coupling them with local calibration校准 for better prediction.

However, most are one-dimensional forecasting.

one-dimensional forecasting VS high-dimensional forecasting:

1. a single dimension forecast mainly depends on past values from the same dimension.

DeepGLO: a deep forecasting model which thinks globally and acts locally.

A hybrid model: a global matrix factorization model regularized by a temporal convolution network + a temporal network that capture local properties of each time-series and associated covariates相关协变量.

Environment: different time series can have vastly different scales without a priori normalization or rescaling.

Introduction:

需求:比如零售商,one may be interested in the future daily demands for all items in a category. This leads to a problem of forecasting n time-series.

Traditional methods: focus on one time-series or a small number of time-series at a time.

AR, ARIMA, exponential smoothing and so on.

?? how to share temporal patterns in the whole data-set while training and prediction?

RNN - sequential modeling; and suffer from the gradient vanishing/ exploding problems.

LSTM 解决了上述问题。

Wavenet model: temporal convolutions/ causal convolutions.

Temporal convolution has been recently used, however, they still have two important shortcomings:

1. hard to train on data-sets that have wide variation in scales.

2. even though these deep models are trained on the entire data-set, during prediction the models only focus on local past data. i.e only the past data of a time-series is used for predicting the future of that time-series.

global properties. take in multiple time-series in the input layer thus capturing global properties.

PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting的更多相关文章

  1. A Deep Neural Network Approach To Speech Bandwidth Expansion

    题名:一种用于语音带宽扩展的深度神经网络方法 作者:Kehuang Li:Chin-Hui Lee 2015年出来的 摘要 本文提出了一种基于深度神经网络(DNN)的语音带宽扩展(BWE)方法.利用对 ...

  2. 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement

    论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...

  3. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  4. What are the advantages of ReLU over sigmoid function in deep neural network?

    The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...

  5. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

  6. Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?

    Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...

  7. 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification

    This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...

  8. 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie

    Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...

  9. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

随机推荐

  1. R语言入门:向量索引

    这节的内容是建立在之前我们对R语言最基本向量赋值的基础之上的,笔者本人学完R当中向量的索引感觉异常舒适,因为这个比Python的索引爽多了,是什么值开始索引就从哪里开始索引,到哪里结束就在哪里结束,而 ...

  2. Vue中的$Bus使用

    Vue中的$Bus使用 将Bus单独抽离成一个文件 Bus.js import Vue from 'vue'; let Bus = new Vue(); export default Bus; 创建两 ...

  3. leaflet结合turf.js实现多边形分割(附源码下载)

    前言 leaflet 入门开发系列环境知识点了解: leaflet api文档介绍,详细介绍 leaflet 每个类的函数以及属性等等 leaflet 在线例子 leaflet 插件,leaflet ...

  4. GPU体系架构(二):GPU存储体系

    GPU是一个外围设备,本来是专门作为图形渲染使用的,但是随着其功能的越来越强大,GPU也逐渐成为继CPU之后的又一计算核心.但不同于CPU的架构设计,GPU的架构从一开始就更倾向于图形渲染和大规模数据 ...

  5. mysql基础(附具体操作代码)

    # 注释内容 -- 注释内容 -- 创建数据库 king CREATE DATABASE king; -- 查看当前服务器下有哪些数据库 SHOW DATABASES; SHOW SCHEMAS; - ...

  6. C++关于锁的总结(一)

    C++关于锁的总结(一) 线程中的锁分为两种,互斥锁和共享锁. 相关的头文件有<mutex>,<shared_mutex>,前者具有std::unique_lock操作,用于实 ...

  7. CVE-2019-1388 Windows UAC提权

    漏洞简述 该漏洞位于Windows的UAC(User Account Control,用户账户控制)机制中.默认情况下,Windows会在一个单独的桌面上显示所有的UAC提示——Secure Desk ...

  8. equals和==的使用

    1.equals的使用: 引用数据类型的比较:通常情况下比较的是引用数据类型下的栈中的地址,但当你重写了equals方法后就不一定了 User user1=new User("tom&quo ...

  9. clientHeight offsetTop scrollTop

  10. C# 工具类LogHelper

    一.创建一个WinForm的项目,并通过NuGet安装log4net. 二.创建LogHelper类以及log4net.config配置文件. 三.编写相关代码. 1.LogHelper类 using ...