2005: [Noi2010]能量采集

Time Limit: 10 Sec  Memory Limit: 552 MB
Submit: 4394  Solved: 2624
[Submit][Status][Discuss]

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。

HINT

 

Source

设f[i]表示gcd为i的对数,显然为(n/i)*(m/i)

去重只要减去f[i*k]即可。

 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<cstdio>
#include<algorithm>
#define maxn 100010
#define LL long long
using namespace std;
LL f[maxn];
int main() {
int n,m;
scanf("%d%d",&n,&m);
LL ans=;
for(int i=min(n,m);i;i--) {
f[i]=(LL)(n/i)*(m/i);
for(int k=;i*k<=min(n,m);k++) f[i]-=f[i*k];
ans+=f[i]*(i-<<|);
}
printf("%lld\n",ans);
return ;
}

[BZOJ2005][Noi2010]能量采集 容斥+数论的更多相关文章

  1. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  2. BZOJ 2005: [Noi2010]能量采集(容斥+数论)

    传送门 解题思路 首先题目要求的其实就是\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m [(gcd(i,j)-1)*2+1)]\),然后变形可得\(-n*m+2\s ...

  3. 洛谷 1447 [NOI2010]能量采集——容斥/推式子

    题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...

  4. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  5. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  6. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  7. BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 4727  Solved: 2877[Submit][Status][Discuss] Descript ...

  8. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  9. 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集

    Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...

随机推荐

  1. BZOJ 3668:起床困难综合症(贪心)

    分析:按位贪心即可. program sleep; var a,g:..]of longint; n,i,m,ans,t,len,x,y,v:longint; c:char; s:string; e: ...

  2. SRM709 div1 Xscoregame(状压dp)

    题目大意: 给定一个序列a,包含n个数(n<=15),每个数的大小小于等于50 初始时x = 0,让你每次选a中的一个数y,使得x = x + x^y 问如何安排选择的次序,使得最终结果最大. ...

  3. [BZOJ4212]神牛的养成计划

    [BZOJ4212]神牛的养成计划 试题描述 Hzwer 成功培育出神牛细胞,可最终培育出的生物体却让他大失所望...... 后来,他从某同校女神 牛处知道,原来他培育的细胞发生了基因突变,原先决定神 ...

  4. 周记【距gdoi:126天】

    这周比上周好了那么一点点……但还是有点呵呵 搞了仙人掌图(当然不是动态的……),以及一个远古算法2-sat(神奇的对称性运用,需要巨大脑洞的建边). 然后关于高考不加分竞赛被“打压”……大神们都发表了 ...

  5. Codeforces Round #524 (Div. 2) C. Masha and two friends

    C. Masha and two friends 题目链接:https://codeforc.es/contest/1080/problem/C 题意: 给出一个黑白相间的n*m的矩阵,现在先对一个子 ...

  6. 解决es6中webstrom不支持import的一个简单方法

    代码如下: export_one.js的代码如下: export function one() { console.log('one'); } export function two() { cons ...

  7. AngularJs学习——何时应该使用Directive、Controller、Service?

    翻译:大漠穷秋 原文链接:http://kirkbushell.me/when-to-use-directives-controllers-or-services-in-angular/ 一.简述 A ...

  8. 图片上传是否为空,以及类型的js验证

    function check2() { var file = document.getElementsByName("file").value; if(file=="&q ...

  9. Web应用程序开发,基于Ajax技术的JavaScript树形控件

    感谢http://www.cnblogs.com/dgrew/p/3181769.html#undefined 在Web应用程序开发领域,基于Ajax技术的JavaScript树形控件已经被广泛使用, ...

  10. Topcoder SRM 608 div1 题解

    Easy(300pts): 题目大意:有n个盒子,一共有S个苹果,每个盒子有多少个苹果不知道,但是知道每个盒子的苹果下限和上限.现在要至少选择X个苹果,问如果要保证无论如何都能获得至少X个苹果,至少需 ...