【bzoj3930】选数 容斥原理+暴力
Description
我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。
Input
输入一行,包含4个空格分开的正整数,依次为N,K,L和H。
Output
输出一个整数,为所求方案数。
Sample Input
2 2 2 4
Sample Output
3
HINT
样例解释
所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)
对于100%的数据,1≤N,K≤109,1≤L≤H≤109,H-L≤10^5
Sol
首先最重要的条件:\(H-L\)在\(10^5\)以内,这说明区间内\(gcd(i,j)<10^5\),那么我们可以直接枚举gcd是多少,然后进行计算。
具体地,我们把H和L都/=K,这样所求变成了\(gcd(a_1,a_2,...,a_n)=1\)的方案数。
我们设\(f[i]\)表示区间内\(gcd\)为i的方案数,那么\(f[i]\)可以再次通过除以\(i\)然后直接求区间长度的方式解决,但是这样我们会把\(\sum_{i|d}f[d]\)也算上,所以需要把i倍数的d减掉,倒推即可。
本题的三个小细节:
- 如果K在L和R的范围内,那么ans++。
- 如果\(L\%K\)不等于0,那么新的L等于\(L/K+1\),因为原来的L往后一小部分是不合法的,要去掉,内层统计时亦是如此。
- 要减去N个数都相同的方案,因为显然这种方案不成立,具体地,快速幂后面减个len就行。
时间复杂度\(O(nlogn)\)。
Code
#include <cstdio>
int N,K,L,R,l,r,M,m,F,f[100005],P=1e9+7;
int ksm(int a,int b){int res=1;for(;b;b>>=1,a=1ll*a*a%P) if(b&1) res=1ll*res*a%P;return res;}
int main()
{
scanf("%d%d%d%d",&N,&K,&L,&R);
if(L<=K&&K<=R) F++;
L=L%K?L/K+1:L/K,R/=K,M=R-L+1;
for(int i=M;i;i--)
{
l=L%i?L/i+1:L/i,r=R/i,m=r-l+1;
if(l<r){f[i]=(ksm(m,N)-m+P)%P;for(int j=(i<<1);j<=M;j+=i) f[i]=(f[i]-f[j]+P)%P;}
}
printf("%d\n",(F+f[1])%P);
}
【bzoj3930】选数 容斥原理+暴力的更多相关文章
- bzoj3930[CQOI2015]选数 容斥原理
3930: [CQOI2015]选数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1383 Solved: 669[Submit][Status] ...
- NOIP 2002提高组 选数 dfs/暴力
1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…, ...
- [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]
题面: 传送门 思路: 首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$ 这道题的最特殊的点 ...
- BZOJ3930: [CQOI2015]选数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...
- 【BZOJ3930】选数(莫比乌斯反演,杜教筛)
[BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...
- 【BZOJ3930】选数
[BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
- luoguP1036 选数 暴力AC题解
luoguP1036 选数 暴力AC题解(非正解) 俗话说得好:暴力出奇迹,打表拿省一. 对于一些暴力就能拿分的题,暴力就好啦QWQ 题目描述 输入格式 输出格式 输入输出样例 定义变量 我们令输 ...
- 洛谷 [CQOI2015]选数 解题报告
[CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...
随机推荐
- leetcode867
vector<vector<int>> transpose(vector<vector<int>>& A) { vector<vector ...
- Mycat之日志分析跨分片事务以及存储过程的执行过程
1 针对成功事务: 过程说明: 1.初始化连接,路由到各个分片 2.开启非阻塞执行更新,然后执行时候每个节点执行2次 3.执行提交,各节点返回commit 4.释放连接,先释放datasource然后 ...
- mahout in Action2.2-给用户推荐图书(2)-分析对用户推荐书目的结果
2.2.3 Analyzing the output 在之前的程序运行结果中我们得到的结果输出是: RecommendedItem [item:104, value:4.257081] 程序要求选择一 ...
- spark 中文编码处理
日志的格式是GBK编码的,而hadoop上的编码是用UTF-8写死的,导致最终输出乱码. 研究了下Java的编码问题. 网上其实对spark输入文件是GBK编码有现成的解决方案,具体代码如下 impo ...
- linux下配置tomcat开机自启动
Linux下配置tomcat开机自启动 1.写一个tomcat脚本,内容如下,设置其权限为755,放在/etc/init.d/目录下 #!/bin/bash## /etc/init.d/tomca ...
- Redis搭建(四):Sharding集群模式
一. 方案 1. 介绍redis集群分为服务端集群(Cluster)和客户端分片(Sharding)服务端集群:redis3.0以上版本实现,使用哈希槽,计算key的CRC16结果再模16834.此处 ...
- eclipse egit(分支管理 上)
这一章比较重要,讲述了Git比svn强大的地方,直接转载廖雪峰老师的文字,更好的理解 什么是分支 和 为什么分支git比svn做的更好 分支在实际中有什么用呢?假设你准备开发一个新功能,但是需要两周才 ...
- Chrome,firefox,ie等浏览器空格 宽度不一样
方案一:使用其他字符代替空格 使用( :)空格浏览器之间,显示的不一样,对不齐等现象. 解决方案: 用半角空格&ensp:或者全角空格&emsp:就可以了,&e ...
- fastcgi_finish_request
本问原地址 http://www.phpddt.com/php/fastcgi_finish_request.html 某些操作,如用户注册后邮件发送,记录日志等一些耗时操作可以转化为异步操作!当PH ...
- Docker学习笔记_安装和使用Rabbitmq
一.准备 1.宿主机OS:Win10 64bit 2.虚拟机OS:Ubuntu18.04 3.账号:docker 4.虚拟机IP:192.168.8.25 二.安装 1.搜索镜像 ...