Description

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

输出一个整数,为所求方案数。

Sample Input

2 2 2 4

Sample Output

3

HINT

样例解释

所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)

其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)

对于100%的数据,1≤N,K≤109,1≤L≤H≤109,H-L≤10^5

Sol

首先最重要的条件:\(H-L\)在\(10^5\)以内,这说明区间内\(gcd(i,j)<10^5\),那么我们可以直接枚举gcd是多少,然后进行计算。

具体地,我们把H和L都/=K,这样所求变成了\(gcd(a_1,a_2,...,a_n)=1\)的方案数。

我们设\(f[i]\)表示区间内\(gcd\)为i的方案数,那么\(f[i]\)可以再次通过除以\(i\)然后直接求区间长度的方式解决,但是这样我们会把\(\sum_{i|d}f[d]\)也算上,所以需要把i倍数的d减掉,倒推即可。

本题的三个小细节:

  1. 如果K在L和R的范围内,那么ans++。
  2. 如果\(L\%K\)不等于0,那么新的L等于\(L/K+1\),因为原来的L往后一小部分是不合法的,要去掉,内层统计时亦是如此。
  3. 要减去N个数都相同的方案,因为显然这种方案不成立,具体地,快速幂后面减个len就行。

时间复杂度\(O(nlogn)\)。

Code

#include <cstdio>
int N,K,L,R,l,r,M,m,F,f[100005],P=1e9+7;
int ksm(int a,int b){int res=1;for(;b;b>>=1,a=1ll*a*a%P) if(b&1) res=1ll*res*a%P;return res;}
int main()
{
scanf("%d%d%d%d",&N,&K,&L,&R);
if(L<=K&&K<=R) F++;
L=L%K?L/K+1:L/K,R/=K,M=R-L+1;
for(int i=M;i;i--)
{
l=L%i?L/i+1:L/i,r=R/i,m=r-l+1;
if(l<r){f[i]=(ksm(m,N)-m+P)%P;for(int j=(i<<1);j<=M;j+=i) f[i]=(f[i]-f[j]+P)%P;}
}
printf("%d\n",(F+f[1])%P);
}

【bzoj3930】选数 容斥原理+暴力的更多相关文章

  1. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  2. NOIP 2002提高组 选数 dfs/暴力

    1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…, ...

  3. [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]

    题面: 传送门 思路: 首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$ 这道题的最特殊的点 ...

  4. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  5. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  6. 【BZOJ3930】选数

    [BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...

  7. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  8. luoguP1036 选数 暴力AC题解

    luoguP1036 选数 暴力AC题解(非正解) 俗话说得好:暴力出奇迹,打表拿省一. 对于一些暴力就能拿分的题,暴力就好啦QWQ 题目描述   输入格式 输出格式 输入输出样例 定义变量 我们令输 ...

  9. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

随机推荐

  1. Metasploit自动化脚本Ezsploit

    打开文件夹并赋予权限 ┌─[root@sch01ar]─[~] └──╼ #cd /sch01ar/ezsploit/ && ls ezsploit.sh README.md ┌─[r ...

  2. 切面(Aspect)获取请求参数和返回值

    @Before("webLog()") public void doBefore(JoinPoint joinPoint) throws Throwable { // 接收到请求, ...

  3. springboot整合redis单机及集群

    一.单机配置 properties配置 #单机redis spring.redis.host=127.0.0.1 spring.redis.port=6379 spring.redis.passwor ...

  4. android解析xml文件的方式

    android解析xml文件的方式   作者:东子哥 ,发布于2012-11-26,来源:博客园   在androd手机中处理xml数据时很常见的事情,通常在不同平台传输数据的时候,我们就可能使用xm ...

  5. 基于C++11的线程池(threadpool),简洁且可以带任意多的参数

    咳咳.C++11 加入了线程库,从此告别了标准库不支持并发的历史.然而 c++ 对于多线程的支持还是比较低级,稍微高级一点的用法都需要自己去实现,譬如线程池.信号量等.线程池(thread pool) ...

  6. 如何将Eclipse中的开源项目使用到Android Studio中

    近几日,笔者用到了一些开源项目,比如著名的PTR项目.但是在使用的过程中,遇到了一些问题. 这个开源库是在Eclipse上面写的,我们现在开发用的是Android stuido. 两种软件的项目结构是 ...

  7. Python_14-绘图

    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...

  8. 【bzoj2947】[Poi2000]促销

    2947: [Poi2000]促销 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 181  Solved: 120[Submit][Status][D ...

  9. web Servise(服务)

    服务层:对项目的业务层(业务层调用数据层)的一个包装成对外的服务,是的UI展示可以从单一的WEB扩展为移动端可WINDFROM端等,这叫做面向服务的编程思想. 发布:和网站发布也是一样的. //web ...

  10. pipeline 对部分特征进行处理

    http://scikit-learn.org/stable/auto_examples/preprocessing/plot_function_transformer.html#sphx-glr-a ...