题目:

http://www.lydsy.com/JudgeOnline/problem.php?id=1101


题解:

http://www.cnblogs.com/mrha/p/8203612.html

数学公式太难打了,核心思想是化成gcd(i,j)==1,然后用莫比乌斯反演变成枚举约数d,然后再搞式子

#include<cstdio>
#include<algorithm>
#define N 50005
typedef long long ll;
using namespace std;
int T,a,b,d,mu[N],prime[N],tot,sum[N];
bool notprime[N];
ll ans;
void getmu()
{
mu[] = sum[] = ;
for(int i = ; i <= N; i++){
if(!notprime[i]) mu[i] = -, prime[++tot] = i;
for(int j = ; j <= tot && i * prime[j] <= N; j++){
notprime[i * prime[j]] = ;
if(i % prime[j]) mu[i * prime[j]] = -mu[i];
else{
mu[i * prime[j]] = ;
break;
}
}
sum[i] = sum[i - ] + mu[i];
}
}
int main()
{
getmu();
scanf("%d",&T);
while (T--)
{
scanf("%d%d%d",&a,&b,&d),a/=d,b/=d,ans=;
if (a>b) swap(a,b);
for (int i=,last=;i<=a;i=last+)
{
last=min(a/(a/i),b/(b/i));
ans+=ll(a/i)*(b/i)*(sum[last]-sum[i-]);
}
printf("%lld\n",ans);
}
return ;
}

BZOJ 1101 [POI2007]Zap | 第一道莫比乌斯反(繁)演(衍)的更多相关文章

  1. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  2. BZOJ 1101: [POI2007]Zap

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2262  Solved: 895[Submit][Status] ...

  3. BZOJ 1101 [POI2007]Zap(莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...

  4. BZOJ 1101 [POI2007]Zap ——Dirichlet积

    [题目分析] Dirichlet积+莫比乌斯函数. 对于莫比乌斯函数直接筛出处理前缀和. 对于后面向下取整的部分,可以分成sqrt(n)+sqrt(m)部分分别计算 学习了一下线性筛法. 积性函数可以 ...

  5. bzoj 1101 [POI2007]Zap——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 #include<cstdio> #include<cstring& ...

  6. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

  7. 【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1101 无限膜拜数论和分块orz 首先莫比乌斯函数的一些性质可以看<初等数论>或<具 ...

  8. 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)

    题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...

  9. 1101: [POI2007]Zap

    Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a ,y<=b,并且gcd(x,y)=d.作为FGD的同 ...

随机推荐

  1. MySql外键建立在哪里(更新)

    一对一的时候:分为主表和附表  外键建立在附件上  附表的外键关联到主表的主键上,Example:学生表和学生信息表,在学生信息表上建立外键 一对多的时候:分为一和多  外键建立在多上  Exampl ...

  2. mongodb的高级查询

    db的帮助文档 输入:db.help(); db.AddUser(username,password[, readOnly=false])  添加用户 db.auth(usrename,passwor ...

  3. php将html页面截图并保存成图片

    采用html5的canvas,将图片绘制到画布上,然后用canvas的 toDataURL 方法. 但是在图片转base64的过程中遇到了两个问题, 1:图片无法绘制,转成的base64 用浏览器打开 ...

  4. python学习——装饰器函数

    一.装饰器函数的作用是什么 答:装饰器函数是在不修改原函数及其调用方式的情况下对原函数功能进行扩展 对于搞python开发的人来说,函数占据了至关重要的地位.都说学好函数你就可以去找工作了,好了,假如 ...

  5. (数据科学学习手札31)基于Python的网络数据采集(初级篇)

    一.简介 在实际的业务中,我们手头的数据往往难以满足需求,这时我们就需要利用互联网上的资源来获取更多的补充数据,但是很多情况下,有价值的数据往往是没有提供源文件的直接下载渠道的(即所谓的API),这时 ...

  6. PHP.46-TP框架商城应用实例-后台21-权限管理-权限和角色的关系

    权限和角色的关系 权限功能 角色功能 权限与角色的关联要通过权限-角色表进行{多对多} /********* 角色-权限表 *********/ drop if exists p39_role_pri ...

  7. python中的os,shutil模块的定义以及用法

    # os 模块 os.sep 可以取代操作系统特定的路径分隔符.windows下为 '\\' os.name 字符串指示你正在使用的平台.比如对于Windows,它是'nt',而对于Linux/Uni ...

  8. Hibernate-ORM:10.Hibernate中的分页

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 本篇博客讲述Hibernate中的分页 hibernate中的分页其实很好写,它通过操作对象的方式,来进行分页 ...

  9. Java泛型的基本介绍与使用

    为什么要使用泛型? 在Java中增加泛型之前,泛型程序设计是用继承来实现的,例如ArrayList,只维护Object引用的数组: public class ArrayList{ private Ob ...

  10. QSS 的选择器

    本文连接地址:http://www.qtdebug.com/QSS-Selector.html 选择器决定了 style sheet 作用于哪些 Widget,QSS 支持 CSS2 定义的所有选择器 ...