[Luogu3727]曼哈顿计划E
题意(简化版)
给你一棵树,每个点上有一个\(SG\)值,问你是否存在一条路径使得\(SG\)异或和为\(0\)。
sol
可以当做每个点的稳定值就是这个点上的石子数量。
很显然我们只需要把每个点的\(SG\)值处理出来后面的就好做了。
分别考虑\(k\)的不同取值下的\(SG\)函数的计算方法。
\(k=1\)
每堆石子可以任意取,显然\(SG(x)=x\)。
\(k=2\)
打表/手玩可以发现,若\(x\)恰好为\(S+1\)的倍数\(-1\)时\(SG(x)=2\),否则\(SG(x)=x\%2\)
\(k=3\)
打表/手玩可以发现,\(SG(x)=\lfloor \frac{x}{S}\rfloor\)。
\(k=4\)
打表可以发现,
\begin{cases}
0 & \text{ , } x= 0 \\
x & \text{ , } x\equiv 1,2 (mod\ 4) \\
x+1 & \text{ , } x\equiv 3 (mod\ 4) \\
x-1 & \text{ , } x\equiv 0 (mod\ 4)
\end{cases}
\]
剩下的就很简单了,点分治每次考虑所有过重心的路径。开\(set\)记录每个点到分治重心的异或和,注意对重心的处理。
code
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<set>
using namespace std;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 3e4+5;
int T,n,k,s,to[N<<1],nxt[N<<1],head[N],cnt,val[N];
int vis[N],sz[N],w[N],root,sum,val_top,fg;
set<int>S;
int SG(int x)
{
if (k==1) return x;
if (k==2) return (x+1)%(s+1)?x&1:2;
if (k==3) return x/s;
if (k==4){
if (x==0) return 0;
if (x%4==1||x%4==2) return x;
if (x%4==3) return x+1;
else return x-1;
}
}
void link(int u,int v)
{
to[++cnt]=v;nxt[cnt]=head[u];head[u]=cnt;
}
void getroot(int u,int f)
{
sz[u]=1;w[u]=0;
for (int e=head[u];e;e=nxt[e])
if (to[e]!=f&&!vis[to[e]])
{
getroot(to[e],u);
sz[u]+=sz[to[e]];w[u]=max(w[u],sz[to[e]]);
}
w[u]=max(w[u],sum-sz[u]);
if (w[u]<w[root]) root=u;
}
void dfs1(int u,int f,int sta)
{
if (S.find(sta^val_top)!=S.end()) fg=1;
for (int e=head[u];e;e=nxt[e])
if (to[e]!=f&&!vis[to[e]])
dfs1(to[e],u,sta^val[to[e]]);
}
void dfs2(int u,int f,int sta)
{
S.insert(sta);
for (int e=head[u];e;e=nxt[e])
if (to[e]!=f&&!vis[to[e]])
dfs2(to[e],u,sta^val[to[e]]);
}
void solve(int u)
{
vis[u]=1;S.insert(0);val_top=val[u];
for (int e=head[u];e;e=nxt[e])
if (!vis[to[e]])
dfs1(to[e],0,val[to[e]]),dfs2(to[e],0,val[to[e]]);
S.clear();
for (int e=head[u];e;e=nxt[e])
if (!vis[to[e]])
{
sum=sz[to[e]];root=0;
getroot(to[e],0);solve(root);
}
}
int main()
{
T=gi();
while (T--)
{
n=gi();cnt=fg=0;
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
for (int i=1;i<n;++i)
{
int u=gi(),v=gi();
link(u,v);link(v,u);
}
for (int i=1;i<=n;++i) val[i]=gi();
k=gi();if (k==2||k==3) s=gi();
for (int i=1;i<=n;++i) val[i]=SG(val[i]);
root=0;w[0]=sum=n;
getroot(1,0);solve(root);
if (fg) puts("Mutalisk ride face how to lose?");
else puts("The commentary cannot go on!");
}
return 0;
}
[Luogu3727]曼哈顿计划E的更多相关文章
- 点分治题单(来自XZY)
点分治题单(来自XZY) 静态点分治 [x] 洛谷 P3806 [模板]点分治1 [x] 洛谷 P4178 Tree [x] 洛谷 P2634 [国家集训队]聪聪可可 [x] 洛谷 P4149 [IO ...
- Luogu P3727 曼哈顿计划E 点分治+hash
题目: P3727曼哈顿计划E 分析: 大长题面容易给人一种不可做的错觉,但是这题考的知识点都是我们熟悉的. 稍加分析我们可以得到,我们可以把每个点当成一个单独的游戏,如果k=1,就是简单的nim游戏 ...
- [洛谷]P3729 曼哈顿计划EX(最小割树/等价流树)
题目大意:给出一张n个点m条边的无向图,每个点有点权,q次询问,每次给出k,要求选出若干个点点权之和不小于k,求一个最大的值x,使得选出的点中任意两点之间至少有x条互不相交的链.(n<=550, ...
- [luoguP3729]曼哈顿计划EX
来自FallDream的博客,未经允许,请勿转载,谢谢. 艾登拥有一个计算机网络,每一台计算机都至少有着Intel Xeon E50 v40 + 40路GTX10800Titan的恐怖配置,并由无线网 ...
- P3727 曼哈顿计划E
点分治+SG函数还真是令人意外的组合啊 思路 这道题看到找一条满足条件的链,想到点分治 看到博弈,想到SG函数 然后就变成一道SG函数+点分治的题了 然后1e9的SG函数怎么搞?当然是打表了 然后各种 ...
- LDA( Latent Dirichlet Allocation)主题模型 学习报告
1 问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一 ...
- 从下往上看--新皮层资料的读后感 第三部分 70年前的逆向推演- 从NN到ANN
第三部分 NN-ANN 70年前的逆向推演 从这部分开始,调整一下视角主要学习神经网络算法,将其与生物神经网络进行横向的比较,以窥探一二. 现在基于NN的AI应用几乎是满地都是,效果也不错,这种貌似神 ...
- Monte Carlo方法简介(转载)
Monte Carlo方法简介(转载) 今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代 ...
- 蒙特·卡罗算法的Python实现
一 背景 此算法诞生的背景是: 曼哈顿计划,有极大的计算需求. 计算机刚开始发展,最适合做计算. 蒙特卡洛算法理论基础是概率论,实际就是暴力计算逼近理想结果.正是在以上两个背景下,它刚好得到了极大的应 ...
随机推荐
- 31 整数中1出现的次数(从1到n整数中1出现的次数)
题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...
- Linux进程优先级查看及修改
进程cpu资源分配就是指进程的优先权(priority).优先权高的进程有优先执行权利.配置进程优先权对多任务环境的Linux很有用,可以改善系统性能.还可以把进程运行到指定的CPU上,这样一来,把不 ...
- JQuery 评分系统
评分: ☆ ☆ ☆ ☆ ☆ <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ...
- Django源码剖析
一.Django底层剖析之一次请求到响应的整个流程 As we all know,所有的Web应用,其本质上其实就是一个socket服务端,而用户的浏览器就是一个socket客户端 #!/usr/bi ...
- INSPIRED启示录 读书笔记 - 第13章 产品原则
确定什么最重要 产品原则是对团队信仰和价值观的总结,用来指导产品团队作出正确的决策和取舍.它体现了产品团队的目标和愿景,是产品战略的重要组成部分.从形式上看,它是一系列明确的.体现团队特色的产品价值准 ...
- eval 加密 js,把js代码重新编续成新的代码,然后eval运行
eval( function(p, a, c, k, e, r) { e = function(c) { return c.toString(a) //35 }; if (!''.replace(/^ ...
- ZSTU 4241 圣杯战争(线段树+经典)
题意:CS召唤了n个实验怪兽,第i号怪兽在i这个位置出.并把KI召唤出的第i位从者安排在pos(i)处,总共有m位从者. 第i只怪兽有战斗力atk(i), 而i号从者的体力为AP(i).如果从者想要移 ...
- spring boot 基础学习
构建微服务:Spring boot 入门篇 http://www.cnblogs.com/ityouknow/p/5662753.html SpringBoot入门系列:第一篇 Hello World ...
- 爬虫之MongoDB的图片
聚合:
- Django---model基础(单表)
ORM 一.映射关系: 表名<--------------->类名 字段<-------------->属性 表记录& ...