这题和在我长郡考试时的一道题思路差不多...考虑折半搜索,预处理左半边选的方案所产生的数量差值\(x\)以及价值差值\(y\),把\(y\)扔到下标为\(x\)的set里面,然后在搜索右半边,每搜出一个状态,设他的数量差值为\(a\),价值差值\(b\),根据题意,要满足数量差值小于1,就要找左半边的状态来互补一下,很显然,如果\(n\)是偶数,数量差就一定是0,否则可以是正负1,所以要在\(set[-a]\)或\(set[-a-1],set[-a+1]\)里二分找一个数\(c\)使他加\(b\)最小,答案去绝对值最小值就好了。注意下标要统一加\(n\),防止出现负值。

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef set<int> ST;
const int maxn=1<<15;
int t,n,a[maxn],ans;
ST st[110];
void ycl(){
for(int i=0;i<=109;i++)
st[i].clear();
ans=0x7fffffff;
int m=n/2,lim=1<<m;
for(int i=0;i<lim;i++){
int cnt=0,tot=0;
for(int j=1,k=1;j<=m;j++,k<<=1)
if(k&i) cnt++,tot+=a[j];
else cnt--,tot-=a[j];
st[cnt+n].insert(tot);
}
}
int check(int x,int y){
int ans=0x7fffffff;
ST::iterator p=st[x].lower_bound(y);
ST::iterator q=st[x].upper_bound(y);
if(p!=st[x].end()) ans=min(ans,abs(*p-y));
if(q!=st[x].end()) ans=min(ans,abs(*q-y));
return ans;
}
void work(){
int l=n/2;
int m=n-l,lim=1<<m;
for(int i=0;i<lim;i++){
int cnt=0,tot=0;
for(int j=1,k=1;j<=m;j++,k<<=1)
if(k&i) cnt++,tot+=a[l+j];
else cnt--,tot-=a[l+j];
cnt=n-cnt;
if(n%2)
ans=min(ans,min(check(cnt-1,-tot),check(cnt+1,-tot)));
else
ans=min(ans,check(cnt,-tot));
}
}
int main(){
// freopen(".in","r",stdin);
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
ycl();
work();
printf("%d\n",ans);
}
return 0;
}

Luogu-3878 [TJOI2010]分金币的更多相关文章

  1. luogu P3878 [TJOI2010]分金币

    [返回模拟退火略解] 题目描述 今有 nnn 个数 {ai}\{a_i\}{ai​},把它们分成两堆{X},{Y}\{X\},\{Y\}{X},{Y},求一种分配使得∣∑i∈Xai−∑i∈Yai∣|\ ...

  2. [luogu3878][TJOI2010]分金币【模拟退火】

    题目描述 现在有n枚金币,它们可能会有不同的价值,现在要把它们分成两部分,要求这两部分金币数目之差不超过1,问这样分成的两部分金币的价值之差最小是多少? 分析 根据模拟退火的基本套路,先随机分两堆金币 ...

  3. [TJOI2010]分金币

    嘟嘟嘟 看数据范围,就能想到折半搜索. 但怎么搜,必须得想清楚了. 假设金币总数为1000,有20个人,首先搜前10个人,把答案记下来.然后如果在后十个人中搜到了4个人,价值为120,那么我们应该在记 ...

  4. [Luogu3878] [TJOI2010]分金币

    题目描述 现在有n枚金币,它们可能会有不同的价值,现在要把它们分成两部分,要求这两部分金币数目之差不超过1,问这样分成的两部分金币的价值之差最小是多少? 输入输出格式 输入格式: 每个输入文件中包含多 ...

  5. [洛谷P3878][TJOI2010]分金币

    题目大意:把$n(n\leqslant30)$个数分成两组,两组个数最多相差$1$,求出两组元素差的绝对值最小使多少 题解:模拟退火 卡点:$\exp$中的两个数相减写反,导致$\exp(x)$中的$ ...

  6. 分金币 bzoj 3293

    分金币(1s 128M)  coin [问题描述] 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的 ...

  7. 【BZOJ-3293&1465&1045】分金币&糖果传递×2 中位数 + 乱搞

    3293: [Cqoi2011]分金币 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 854  Solved: 476[Submit][Status] ...

  8. 【贪心+中位数】【UVa 11300】 分金币

    (解方程建模+中位数求最短累积位移) 分金币(Spreading the Wealth, UVa 11300) 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一 ...

  9. 【BZOJ3293】分金币(贪心)

    [BZOJ3293]分金币(贪心) 题面 BZOJ 洛谷 题解 和上一题一样啊. #include<cstdio> #include<cmath> #include<al ...

随机推荐

  1. Android开发:《Gradle Recipes for Android》阅读笔记(翻译)3.5——在flavors间合并java代码

    问题: 你想要在单独的product flavors里面增加Acitivity或者其它java类. 解决方案: 创建合适的代码目录,增加java类,将它们和main代码合并. 讨论: flavors和 ...

  2. linux下软件的安装与卸载

    一 软件安装包的类型 通常Linux应用软件的安装有五种:    1) tar+ gz包,如software-1.2.3-1.tar.gz.他是使用UNIX系统的打包工具tar打包的.    2) r ...

  3. SteinerTree模板

    #define N 55//所有点的个数 #define K 10//SteinerTree 最大顶点数,必须精确 #define INF 10000000 //SteinerTree 邻接矩阵模板. ...

  4. HDU4781(2013成都站A题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4781 题目大意:给你n个点m条边,要求你构造一个符合条件的有向联通图(若无法构造输出-1,否则输出任意 ...

  5. T-SQL Table-valued Function使用分隔符将字符串转换为表

    )=' ') RETURNS @Strings TABLE ( ITEM_VALUE VARCHAR(MAX) ) AS BEGIN DECLARE @index INT ) BEGIN SET @i ...

  6. passback_params 支付回调的 原样返回字段 自定义字段的存放字段

    开放平台文档中心 https://docs.open.alipay.com/204/105465/ passback_params String 否 512 公用回传参数,如果请求时传递了该参数,则返 ...

  7. 【转】《JAVA与模式》之责任链模式

    <JAVA与模式>之责任链模式 在阎宏博士的<JAVA与模式>一书中开头是这样描述责任链(Chain of Responsibility)模式的: 责任链模式是一种对象的行为模 ...

  8. 非Linux环境下调用sh命令

    方法一:把cygwin的bin配置到环境变量里,这样做了以后在cmd.exe里也可以使用linux的命令 def exe_command(command): p = subprocess.Popen( ...

  9. Matlab mser(最大极值稳定区域)

    在Matlab R2013a 和R2014a中已经实现MSER特征的提取. 一.函数detectMSERFeatures 输入的是M*N的灰度图片.可以指定阈值刻度,区域范围,感兴趣区域等参数. 输出 ...

  10. 从1到N中1的个数

    示例1,2...9,10,11中有四个1 int getNumber(int n) { int count = 0; int factor = 1; int low = 0; int cur = 0; ...