Luogu-3878 [TJOI2010]分金币
这题和在我长郡考试时的一道题思路差不多...考虑折半搜索,预处理左半边选的方案所产生的数量差值\(x\)以及价值差值\(y\),把\(y\)扔到下标为\(x\)的set里面,然后在搜索右半边,每搜出一个状态,设他的数量差值为\(a\),价值差值\(b\),根据题意,要满足数量差值小于1,就要找左半边的状态来互补一下,很显然,如果\(n\)是偶数,数量差就一定是0,否则可以是正负1,所以要在\(set[-a]\)或\(set[-a-1],set[-a+1]\)里二分找一个数\(c\)使他加\(b\)最小,答案去绝对值最小值就好了。注意下标要统一加\(n\),防止出现负值。
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef set<int> ST;
const int maxn=1<<15;
int t,n,a[maxn],ans;
ST st[110];
void ycl(){
for(int i=0;i<=109;i++)
st[i].clear();
ans=0x7fffffff;
int m=n/2,lim=1<<m;
for(int i=0;i<lim;i++){
int cnt=0,tot=0;
for(int j=1,k=1;j<=m;j++,k<<=1)
if(k&i) cnt++,tot+=a[j];
else cnt--,tot-=a[j];
st[cnt+n].insert(tot);
}
}
int check(int x,int y){
int ans=0x7fffffff;
ST::iterator p=st[x].lower_bound(y);
ST::iterator q=st[x].upper_bound(y);
if(p!=st[x].end()) ans=min(ans,abs(*p-y));
if(q!=st[x].end()) ans=min(ans,abs(*q-y));
return ans;
}
void work(){
int l=n/2;
int m=n-l,lim=1<<m;
for(int i=0;i<lim;i++){
int cnt=0,tot=0;
for(int j=1,k=1;j<=m;j++,k<<=1)
if(k&i) cnt++,tot+=a[l+j];
else cnt--,tot-=a[l+j];
cnt=n-cnt;
if(n%2)
ans=min(ans,min(check(cnt-1,-tot),check(cnt+1,-tot)));
else
ans=min(ans,check(cnt,-tot));
}
}
int main(){
// freopen(".in","r",stdin);
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
ycl();
work();
printf("%d\n",ans);
}
return 0;
}
Luogu-3878 [TJOI2010]分金币的更多相关文章
- luogu P3878 [TJOI2010]分金币
[返回模拟退火略解] 题目描述 今有 nnn 个数 {ai}\{a_i\}{ai},把它们分成两堆{X},{Y}\{X\},\{Y\}{X},{Y},求一种分配使得∣∑i∈Xai−∑i∈Yai∣|\ ...
- [luogu3878][TJOI2010]分金币【模拟退火】
题目描述 现在有n枚金币,它们可能会有不同的价值,现在要把它们分成两部分,要求这两部分金币数目之差不超过1,问这样分成的两部分金币的价值之差最小是多少? 分析 根据模拟退火的基本套路,先随机分两堆金币 ...
- [TJOI2010]分金币
嘟嘟嘟 看数据范围,就能想到折半搜索. 但怎么搜,必须得想清楚了. 假设金币总数为1000,有20个人,首先搜前10个人,把答案记下来.然后如果在后十个人中搜到了4个人,价值为120,那么我们应该在记 ...
- [Luogu3878] [TJOI2010]分金币
题目描述 现在有n枚金币,它们可能会有不同的价值,现在要把它们分成两部分,要求这两部分金币数目之差不超过1,问这样分成的两部分金币的价值之差最小是多少? 输入输出格式 输入格式: 每个输入文件中包含多 ...
- [洛谷P3878][TJOI2010]分金币
题目大意:把$n(n\leqslant30)$个数分成两组,两组个数最多相差$1$,求出两组元素差的绝对值最小使多少 题解:模拟退火 卡点:$\exp$中的两个数相减写反,导致$\exp(x)$中的$ ...
- 分金币 bzoj 3293
分金币(1s 128M) coin [问题描述] 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的 ...
- 【BZOJ-3293&1465&1045】分金币&糖果传递×2 中位数 + 乱搞
3293: [Cqoi2011]分金币 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 854 Solved: 476[Submit][Status] ...
- 【贪心+中位数】【UVa 11300】 分金币
(解方程建模+中位数求最短累积位移) 分金币(Spreading the Wealth, UVa 11300) 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一 ...
- 【BZOJ3293】分金币(贪心)
[BZOJ3293]分金币(贪心) 题面 BZOJ 洛谷 题解 和上一题一样啊. #include<cstdio> #include<cmath> #include<al ...
随机推荐
- 多用户商城系统 KgMall2.1公布
2014-5-28日,广州JUULUU公布多用户商城系统 KgMall2.1,kgMall是国内一款JAVA开源多用户版商城系统,新版KgMall更加模块化,juuluu团队重构了Kgcms的多个模块 ...
- MySQL中enum类型数据,要传入字符串
问题来源:公司业务,某张表中一个字段定义为: enum('0','1','2','3','4','5','6','7','8','9','10') NOT NULL DEFAULT '0' 某天跑脚本 ...
- 字符设备驱动程序--LED驱动
编写驱动程序需要编写那些代码: 1.硬件相关的驱动程序 2.Makefile的编译程序 3.还需要编写一个相关的测试程序 比如说:一个摄像头驱动程序 1.驱动程序的编写,需要编写一些硬件相关的操作,编 ...
- hdu 4419 线段树 扫描线 离散化 矩形面积
//离散化 + 扫描线 + 线段树 //这个线段树跟平常不太一样的地方在于记录了区间两个信息,len[i]表示颜色为i的被覆盖的长度为len[i], num[i]表示颜色i 『完全』覆盖了该区间几层. ...
- python学习【第八篇】python模块
模块与包 模块的概念 在python中一个.py文件就是一个模块. 使用模块可以提高代码的可维护性. 模块分为三种: python标准库 第三方模块 自定义模块 模块的导入方法 1.import语句 ...
- servlet;jsp;cookies;session
- 巨蟒python全栈开发数据库前端9:bootstrap
1.bootstrap的主网站: http://www.bootcss.com/ (1)bootstrap的CSS样式 (2)bootstrap组件 (3)JavaScript插件 (4)阿里图标库的 ...
- Jquery Ajax Json ashx 实现前后台数据传输
经过一个多星期的研究,各种查找资料终于自己实现了Jquery Ajax Json ashx 的前后台数据交流功能 首先一点,Ajax只能对应一个ashx文件,多余两个,如果打开异步传输的async: ...
- Vue.js之组件传值
Vue.js之组件传值 属性传值可以从父组件到子组件,也可以从子组件到父组件. 这里讲一下从父组件到子组件的传值 还以上次的demo为例,demo里有APP.vue是父组件,Header.vue,Us ...
- VM安装之分区、自定义安装包
一.分区 1.一般分为3个区:/root .swap./ 1)./root:引导分区.存放引导文件和Linux内核等. 启动文件:用于判断你需要启动哪个操作系统或者哪个内核: 内核:程序与硬件之间的桥 ...