UESTC - 1610 递推方程+矩阵快速幂
感觉像是HDU Keyboard的加强版,先推出3张牌时的所有组合,然后递推出n张牌
看到n=1e18时吓尿了
最后24那里还是推错了..
(5行1列 dp[1][n],dp[2][n],dp[3][n],dp[4][n],dp[5][n]) = A^(n-3) * (5行1列 4,12,12,12,24)
其中,A=
1,0,0,1,0
3,0,0,3,0
0,1,1,0,1
0,1,1,0,1
0,2,2,0,1
#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
using namespace std;
typedef long long ll;
const int maxn = 100;
const ll MOD = 1e9+9;
inline ll mod(ll a){return a%MOD;}
int b[6][6]={
{0,0,0,0,0,0},
{0,1,0,0,1,0},
{0,3,0,0,3,0},
{0,0,1,1,0,1},
{0,0,1,1,0,1},
{0,0,2,2,0,1},
};
ll c[6]={0,4,12,12,12,24};
struct Mat{
ll m[7][7],r,c;
void node(int rr,int cc,bool unit=0){
r=rr;c=cc;
memset(m,0,sizeof m);
if(unit) rep(i,1,rr) m[i][i]=1;
}
};
Mat operator * (Mat a,Mat b){
Mat ans;ans.node(a.r,b.c);
rep(i,1,a.r){
rep(j,1,b.c){
int t=max(a.r,b.c);
rep(k,1,t){
ans.m[i][j]+=mod(a.m[i][k]*b.m[k][j]);
ans.m[i][j]=mod(ans.m[i][j]);
}
}
}
return ans;
}
Mat qmod(Mat a,ll n){
Mat ans;ans.node(5,5,1);
while(n){
if(n&1) ans=ans*a;
n>>=1;
a=a*a;
}
return ans;
}
ll qmod(ll a,ll n){
ll ans=1;
while(n){
if(n&1) ans=mod(mod(ans)*mod(a));
n>>=1;
a=mod(mod(a)*mod(a));
}
return mod(ans);
}
int main(){
ll n;
Mat base,base2; base.node(5,5); base2.node(5,1);
rep(i,1,5) rep(j,1,5) base.m[i][j]=b[i][j];
rep(i,1,5) base2.m[i][1]=c[i];
while(scanf("%lld",&n)!=EOF){
Mat tmp=qmod(base,n-3);
Mat res=tmp*base2;
ll ans=0;
rep(i,1,5) {ans+=mod(res.m[i][1]);ans=mod(ans);}
ans=mod(qmod(4,n)-ans);
printf("%lld\n",ans<0?ans+MOD:ans);
}
return 0;
}
UESTC - 1610 递推方程+矩阵快速幂的更多相关文章
- [HDOJ2604]Queuing(递推,矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 递推式是百度的,主要是练习一下如何使用矩阵快速幂优化. 递推式:f(n)=f(n-1)+f(n- ...
- hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)
[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...
- HDU - 2604 Queuing(递推式+矩阵快速幂)
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU5950 Recursive sequence 非线性递推式 矩阵快速幂
题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题 ...
- hdu 5950 Recursive sequence 递推式 矩阵快速幂
题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...
- [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化
这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...
- HDU-6185-Covering(推递推式+矩阵快速幂)
Covering Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu 6185 递推+【矩阵快速幂】
<题目链接> <转载于 >>> > 题目大意: 让你用1*2规格的地毯去铺4*n规格的地面,告诉你n,问有多少种不同的方案使得地面恰好被铺满且地毯不重叠.答案 ...
- 【图灵杯 F】一道简单的递推题(矩阵快速幂,乘法模板)
Description 存在如下递推式: F(n+1)=A1*F(n)+A2*F(n-1)+-+An*F(1) F(n+2)=A1*F(n+1)+A2*F(n)+-+An*F(2) - 求第K项的值对 ...
随机推荐
- SqlServer-geography && Spatial result
说起geography(地理)这个类型,我感觉好陌生,以前真的没有见过,今天在查询某个Address表的时候,却发现了新大陆——Spatial result(空间的结果). (1)表的结构 (2)查询 ...
- ShopNc登录验证码
- Entity Framework edmx(mapping文件)
<?xml version="1.0" encoding="utf-8"?><edmx:Edmx Version="2.0" ...
- 基于.Net平台常用的组件和框架整理
转载自:http://www.cnblogs.com/hgmyz/p/5313983.html 基于转载进行补充 RPC框架: RPC:远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而 ...
- Matlab和Python用于深度学习应用研究哪个好?
Matlab和Python都有一些关于深度学习的开源的解决方案(caffe\DeepMind\TensorFlow),基于哪个开展应用研究好?
- python2.7响应数据中unicode转中文
print ("响应结果:%s" % r.content.decode('unicode_escape')) 一. 在爬虫抓取网页信息时常需要将类似"\u4eba\u75 ...
- POJ3233 Matrix Power Series(矩阵快速幂+分治)
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. ...
- Maven整理笔记の初步窥探
第一部分:引言 Maven是一款跨平台的项目管理工具,作为Apache组织的一个开源项目,主要服务于基于java平台的项目构建.依赖管理和项目信息管理. 项目构建:编译.运行单元测试.生成文档.打包和 ...
- Replication--复制问答
在发布表尾部增加字段,需要重新初始化订阅么?答:在发布表尾部增加字段,不需要不需要重新初始化订阅,该修改会自动同步到订阅段,也不需要对复制做任何修改.但如果在同一个发布中增加新的项目,需要重新初始化订 ...
- SQL多行并一行统计例子之STUFF()函数+FOR XML PATH()函数应用
SELECT * FROM tbiz_ProjectRelation 目标统计每个项目有几条申请记录 Step1 SELECT ProjectID , RelationIDs , , '') FROM ...