开心一刻

去年在抖音里谈了个少妇,骗了我 9 万

后来我发现了,她怕我报警

她把她表妹介绍给我

然后她表妹又骗了我 7 万

DataX

DataX 是什么,有什么用,怎么用

不做介绍,大家自行去官网(DataX)看,Gitee 上也有(DataX

你们别不服,我这是为了逼迫你们去自学,是为了你们好!

文档很详细,也是开源的,我相信你们都能看懂,也能很快上手用起来

那这篇文章到此结束,大家各自去忙吧

但是等等,我想带你们去改造改造datax

挺有意思的,我们慢慢往下看

去 Python

根据官方的 Quick Start

是依赖 Python 来启动的

$ cd  {YOUR_DATAX_HOME}/bin
$ python datax.py {YOUR_JOB.json}

如果要去掉 Python 依赖,你们会怎么做?

是不是梳理清楚 datax.py 的代码逻辑就行了?

datax.py

这个代码不长,但是如果没有一点 Python 底子,datax.py 是看不懂的

所以我们换个方式,去寻找我们需要的信息就行了

DataX 的业务代码是 java 实现的,然后你们再往上看看 System Requirements

你们觉得该如何启动 JVM 进程来执行 DataXjava 代码?

是不是只能用 JDKjava 命令了?

所以我们直接在 datax.py 中搜索 java 即可

你们会发现只有如下这一行表示 java 命令

ENGINE_COMMAND = "java -server ${jvm} %s -classpath %s  ${params} com.alibaba.datax.core.Engine -mode ${mode} -jobid ${jobid} -job ${job}" % (
DEFAULT_PROPERTY_CONF, CLASS_PATH)

Python 中的 % 就相当于 java 中的 String.format 方法

也就说,datax.py 是通过 java -server 命令来启动 JVM 进程的

那么我们是不是可以绕过 Python,直接在 cmd 调用 java -server 来启动了?

java -server

这个命令还真不眼熟,因为我们接触到的往往是 java -jar

我们用 java -h 看下 java 命令的说明

发现了什么?

-serveroption 之一,与 -jar 并不是 非此即彼 的关系

所以不要去拿 java -serverjava -jar 做对比了,没意义!!!

在Java中,JVM有两种运行模式:客户端模式和服务器模式。这两种模式是为了优化不同场景下的JVM性能而设计的。

服务器模式:这种模式适用于长时间运行的应用程序,如Web服务器或数据库服务器。服务器模式下的JVM会进行更多的优化,以减少长时间运行的性能开销。例如,它会进行更深入的即时编译(JIT compilation),以提高代码的执行效率。

客户端模式:默认情况下,JVM运行在客户端模式。这种模式适用于较短时间运行的应用程序,如桌面应用或命令行工具。客户端模式下的JVM会更快地启动,但可能不如服务器模式那样高效。

使用-server选项启动JVM时,您告诉JVM在服务器模式下运行。这通常意味着JVM将使用更多的系统资源,但可以提供更好的性能,特别是在长时间运行的应用程序中

我们先下载 DataX 工具包

解压之后,我的 DataX 的根目录是:G:\datax-tool\datax

我们不通过 datax.py 来启动,而是直接在 cmd 下通过 java 命令来启动

java -server -Xms1g -Xmx1g -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=G:\datax-tool\datax\log -Dfile.encoding=GBK -Dlogback.statusListenerClass=ch.qos.logback.core.status.NopStatusListener -Djava.security.egd=file:///dev/urandom -Ddatax.home=G:\datax-tool\datax -Dlogback.configurationFile=G:\datax-tool\datax\conf\logback.xml -classpath G:\datax-tool\datax\lib\* com.alibaba.datax.core.Engine -mode standalone -jobid -1 -job G:\datax-tool\datax\job\job.json

注意:上述 java 命令中的相关路径需要替换成你们自己的路径!

不出意外的话,会执行成功

为什么依赖 Python

如果你们去看了 DataX 工具包的目录结构,或者 DataX 的源码

你们会发现 DataX 就是用 java 实现的,Python 仅仅只是作为一个启动脚本(另外两个脚本你们自己去研究)

仅仅为了一个启动,而这个启动又不是非 Python 不可,就引入了 Python 环境依赖,试问这合理吗?

不要急着下结论,我们理智分析一波

DataX 正式投入使用的时候,会部署到什么系统上,请你们大声的告诉我

不说全部,绝大部分是部署在 Linux 上,对此我相信你们都没异议吧

那么重点来了:目前主流的 Linux 系统,都自带 Python !!!

也就是不用再额外的是安装 Python,直接可以用,那为什么不用呢?

那如果是部署在 Windows 上,而又不想安装 Python,该如何启动了?

如果你们还能问出这样的问题,我只想给你们来上一枪

前面不是刚讲吗,在 cmd 直接用 java 命令来启动 DataX 不就行了?

java 启动 DataX

说的更详细点,是通过 java 代码去启动 DataX JVM 进程

我相信你们都会,直接上代码

private static final String DATAX_COMMAND = "java -server -Xms1g -Xmx1g -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=G:\\datax-tool\\datax\\log -Dfile.encoding=GBK -Dlogback.statusListenerClass=ch.qos.logback.core.status.NopStatusListener -Djava.security.egd=file:///dev/urandom -Ddatax.home=G:\\datax-tool\\datax -Dlogback.configurationFile=G:\\datax-tool\\datax\\conf\\logback.xml -classpath G:\\datax-tool\\datax\\lib\\* com.alibaba.datax.core.Engine -mode standalone -jobid -1 -job G:\\datax-tool\\datax\\job\\job.json";

public static void main(String[] args) {
try {
Process process = Runtime.getRuntime().exec(DATAX_COMMAND);
// 等待命令执行完成
int i = process.waitFor();
if (i == 0) {
System.out.println("job执行完成");
} else {
System.out.println("job执行失败");
}
} catch (Exception e) {
throw new RuntimeException(e);
}
}

是不是很简单?

执行下,你会发现卡住了!!!

出师不利呀,要不放弃?

Runtime 对象调用 exec(cmd) 后,JVM 会启动一个子进程,该进程会与 JVM 进程建立三个管道连接:标准输入标准输出标准错误流

假设子进程不断在向标准输出流和标准错误流写数据,而 JVM 进程不读取的话,当缓冲区满之后将无法继续写入数据,最终造成阻塞在 waitfor()

所以改造下就好了

private static final String SYSTEM_ENCODING = System.getProperty("sun.jnu.encoding");
private static final String DATAX_COMMAND = "java -server -Xms1g -Xmx1g -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=G:\\datax-tool\\datax\\log -Dfile.encoding=GBK -Dlogback.statusListenerClass=ch.qos.logback.core.status.NopStatusListener -Djava.security.egd=file:///dev/urandom -Ddatax.home=G:\\datax-tool\\datax -Dlogback.configurationFile=G:\\datax-tool\\datax\\conf\\logback.xml -classpath G:\\datax-tool\\datax\\lib\\* com.alibaba.datax.core.Engine -mode standalone -jobid -1 -job G:\\datax-tool\\datax\\job\\job.json"; public static void main(String[] args) {
try {
Process process = Runtime.getRuntime().exec(DATAX_COMMAND); // 另启线程读取
new Thread(() -> {
try (BufferedReader reader = new BufferedReader(new InputStreamReader(process.getInputStream(), SYSTEM_ENCODING))) {
String line;
while ((line = reader.readLine()) != null) {
System.out.println(line);
}
} catch (IOException e) {
throw new RuntimeException(e);
}
}).start(); new Thread(() -> {
try (BufferedReader errorReader = new BufferedReader(new InputStreamReader(process.getErrorStream(), SYSTEM_ENCODING))) {
String line;
while ((line = errorReader.readLine()) != null) {
System.out.println(line);
}
} catch (IOException e) {
throw new RuntimeException(e);
}
}).start(); // 等待命令执行完成
int i = process.waitFor();
if (i == 0) {
System.out.println("job执行完成");
} else {
System.out.println("job执行失败");
}
} catch (Exception e) {
throw new RuntimeException(e);
}
}

还是比较简单的吧,相信你们都能看懂

总结

  • DataX 是进程级别的,而 Job 下的 Task 是线程级别的

    为什么 DataX 要实现成进程级别,而不是线程级别?

    小数据量的同步,实现方式往往很多

    但大数据量的同步,情况就不一样了,那么此时进程和线程的区别还大吗

  • Linux 系统基本自带 Python 环境,所以大家不要再纠结为什么依赖 Python

    去掉 Python 依赖也很简单,文中已有演示

  • DataX + datax-web 这个组合已经基本够用

    datax-web 基于 XXL-JOB,基本满足我们日常的调度要求了

异构数据源同步之数据同步 → datax 改造,有点意思的更多相关文章

  1. SQLite与MySQL、SQLServer等异构数据库之间的数据同步

    SQLite DBSync是开源嵌入式数据库SQLite的数据同步引擎,实现了SQLite与SQLite数据库之间以及SQLite与异构数据库(Oracle.MySQL.SQLServer)之间的增量 ...

  2. Navicat premium对数据库的结构同步和数据同步功能

    一.在目标数据库新建一个相同的数据库名. 二.工具-->结构同步. 三.填写源数据库和目标数据库. 四.点击比对 五.点击部署 六.点击运行 七.点击关闭.此时源数据库的结构已经同步到目标数据库 ...

  3. 不同数据源之间的数据同步jdbc解决方案

    最近项目中用到的数据要从一个数据源获取存进另一个数据源,简单的jdbc解决方案. package com.sh.ideal.test.syns; import java.sql.Connection; ...

  4. 环境篇:数据同步工具DataX

    环境篇:数据同步工具DataX 1 概述 https://github.com/alibaba/DataX DataX是什么? DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 ...

  5. 数据同步工具Sqoop和DataX

    在日常大数据生产环境中,经常会有集群数据集和关系型数据库互相转换的需求,在需求选择的初期解决问题的方法----数据同步工具就应运而生了.此次我们选择两款生产环境常用的数据同步工具进行讨论 Sqoop ...

  6. 数据同步Datax与Datax_web的部署以及使用说明

    一.DataX3.0概述 DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL.Oracle等).HDFS.Hive.ODPS.HBase.FTP等各种异构数据源之间稳定高 ...

  7. 比Sqoop功能更加强大开源数据同步工具DataX实战

    @ 目录 概述 定义 与Sqoop对比 框架设计 支持插件 核心架构 核心优势 部署 基础环境 安装 从stream读取数据并打印到控制台 读取MySQL写入HDFS 读取HDFS写入MySQL 执行 ...

  8. 基于datax的数据同步平台

    一.需求 由于公司各个部门对业务数据的需求,比如进行数据分析.报表展示等等,且公司没有相应的系统.数据仓库满足这些需求,最原始的办法就是把数据提取出来生成excel表发给各个部门,这个功能已经由脚本转 ...

  9. Java多线程初学者指南(9):为什么要进行数据同步

    Java中的变量分为两类:局部变量和类变量.局部变量是指在方法内定义的变量,如在run方法中定义的变量.对于这些变量来说,并不存在线程之间共享的问题.因此,它们不需要进行数据同步.类变量是在类中定义的 ...

  10. Django:(博客系统)使用使用mysql数据&创建post/category/tag实体,并同步到数据中

    背景: 之前也读过一些关于django的一些书,看过别人写的一些博客系统.但是总有一种看别人的都会,但自己写不出来的感觉,于是为了加深对django的学习就开始动手学习了. 环境搭建: 环境:使用py ...

随机推荐

  1. 将py文件编译成pyc

    核心代码 import compileall compileall.compile_file("a.py", legacy=True, force=True) 演示步骤 1.新建 ...

  2. keycloak~RequiredActionProvider的使用

    使用场景 RequiredActionProvider,它是在认证过程中,需要当前登录的用户执行个性化的动作:当用户符合条件,就被执行RequiredActionProvider对作,当Require ...

  3. MySQL—MySQL架构

    MySQL-MySQL架构 MySQL逻辑架构图如下: Connectors连接器:负责跟客户端建立连接: Management Serveices & Utilities系统管理和控制工具: ...

  4. IaC:实现持续交付和 DevOps 自动化的关键

    基础架构即代码(IaC)和 CI/CD 流水线最初似乎并不匹配.因为它们代表了两种不同的流程.IaC 主要关注基础设施的配置和开发,而 CI/CD 则围绕软件开发.测试和部署. 然而,将 IaC 集成 ...

  5. Flask、Tornado、Nginx搭建Https服务

    其实Flask可以直接用tornado部署就行: # coding=utf-8 from tornado.wsgi import WSGIContainer from tornado.httpserv ...

  6. locust常用的配置参数【locust版本:V1.1.1】

    locust 官网文档地址:https://docs.locust.io/en/stable/configuration.html Locust QQ 群: 执行命令如: master: locust ...

  7. 《C# in depth》第5章C#5.0中的更改(十二)——指针和非安全编码

    指针类型是一种C# 5.0 中引入的不安全代码特性,它允许程序员直接访问内存地址,以及使用指向变量和对象的指针.指针类型可以帮助程序员处理一些高性能场景,例如在大型数组中查找数据. 指针类型需要使用 ...

  8. 如何将实时计算 Flink 与自身环境打通

    简介: 如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 客训练营产品.技术专家齐上阵,从 Flink的发展. Flink 的技术原理.应用场景及行业案例,到开源Flink功能介绍 ...

  9. 深度解密|基于 eBPF 的 Kubernetes 问题排查全景图发布

    ​简介:通过 eBPF 无侵入地采集多语言.多网络协议的黄金指标/网络指标/Trace,通过关联 Kubernetes 对象.应用.云服务等各种上下文,同时在需要进一步下钻的时候提供专业化的监测工具( ...

  10. Databricks 企业版 Spark&Delta Lake 引擎助力 Lakehouse 高效访问

    ​简介:本文介绍了Databricks企业版Delta Lake的性能优势,借助这些特性能够大幅提升Spark SQL的查询性能,加快Delta表的查询速度. 作者: 李锦桂(锦犀) 阿里云开源大数据 ...