LinkedHashMap原理详解—从LRU缓存机制说起
写在前面
从一道Leetcode题目说起
首先,来看一下Leetcode里面的一道经典题目:146.LRU缓存机制,题目描述如下:
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现
LRUCache类:
LRUCache(int capacity)以 正整数 作为容量capacity初始化 LRU 缓存int get(int key)如果关键字key存在于缓存中,则返回关键字的值,否则返回-1。void put(int key, int value)如果关键字key已经存在,则变更其数据值value;如果不存在,则向缓存中插入该组key-value。如果插入操作导致关键字数量超过capacity,则应该 逐出 最久未使用的关键字。函数
get和put必须以O(1)的平均时间复杂度运行。
LRU 的全称是 Least Recently Used,也就是说我们认为最近使用过的数据应该是是「有用的」,很久都没用过的数据应该是无用的,内存满了就优先删那些很久没用过的数据。
分析
要让 LRU 的 put 和 get 方法的时间复杂度为 O(1),可以总结出 LRU 这个数据结构必要的条件:
- 显然 LRU 中的元素必须有时序,以区分最近使用的和久未使用的数据,当容量满了之后要删除最久未使用的那个元素腾位置。
- 要在 LRU 中快速找某个
key是否已存在并得到对应的val; - 每次访问 LRU 中的某个
key,需要将这个元素变为最近使用的,也就是说 LRU 要支持在任意位置快速插入和删除元素。
那么,什么数据结构同时符合上述条件呢?哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢。所以结合一下,形成一种新的数据结构:哈希链表 LinkedHashMap。
LRU 缓存算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。这个数据结构长这样:

借助这个结构,逐一分析上面的 3 个条件:
- 如果我们每次默认从链表尾部添加元素,那么显然越靠尾部的元素就是最近使用的,越靠头部的元素就是最久未使用的。
- 对于某一个
key,我们可以通过哈希表快速定位到链表中的节点,从而取得对应val。 - 链表显然是支持在任意位置快速插入和删除的,改改指针就行。只不过传统的链表无法按照索引快速访问某一个位置的元素,而这里借助哈希表,可以通过
key快速映射到任意一个链表节点,然后进行插入和删除。
put方法流程图:

LinkedHashMap介绍
LinkedHashSet和LinkedHashMap其实也是一回事。LinkedHashSet和LinkedHashMap在Java里也有着相同的实现,前者仅仅是对后者做了一层包装,也就是说LinkedHashSet里面有一个LinkedHashMap(适配器模式)。
LinkedHashMap实现了Map接口,即允许放入key为null的元素,也允许插入value为null的元素。从名字上可以看出该容器是linked list和HashMap的混合体,也就是说它同时满足HashMap和linked list的某些特性。可将LinkedHashMap看作采用linked list增强的HashMap。

事实上LinkedHashMap是HashMap的直接子类,二者唯一的区别是LinkedHashMap在HashMap的基础上,采用双向链表(doubly-linked list)的形式将所有entry连接起来,这样的好处:
可以保证元素的迭代顺序跟插入顺序相同。跟HashMap相比,多了header指向双向链表的头部(是一个哑元),该双向链表的迭代顺序就是entry的插入顺序。
迭代LinkedHashMap时不需要像HashMap那样遍历整个table,而只需要直接遍历header指向的双向链表即可,也就是说LinkedHashMap的迭代时间就只跟entry的个数相关,而跟table的大小无关。
有两个参数可以影响LinkedHashMap的性能:初始容量(inital capacity)和负载系数(load factor)。初始容量指定了初始table的大小,负载系数用来指定自动扩容的临界值。当entry的数量超过capacity*load_factor时,容器将自动扩容并重新哈希。对于插入元素较多的场景,将初始容量设大可以减少重新哈希的次数。这点与HashMap是一样的
方法剖析
get()
get(Object key)方法根据指定的key值返回对应的value。该方法跟HashMap.get()方法的流程几乎完全一样
put()
put(K key, V value)方法是将指定的key, value对添加到map里。该方法首先会对map做一次查找,看是否包含该元组,如果已经包含则直接返回,查找过程类似于get()方法;如果没有找到,则会通过addEntry(int hash, K key, V value, int bucketIndex)方法插入新的entry。
注意,这里的插入有两重含义:
- 从table的角度看,新的entry需要插入到对应的bucket里,当有哈希冲突时,采用头插法将新的entry插入到冲突链表的头部。
- 从header的角度看,新的entry需要插入到双向链表的尾部。

addEntry()代码如下:
// LinkedHashMap.addEntry()
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);// 自动扩容,并重新哈希
hash = (null != key) ? hash(key) : 0;
bucketIndex = hash & (table.length-1);// hash%table.length
}
// 1.在冲突链表头部插入新的entry
HashMap.Entry<K,V> old = table[bucketIndex];
Entry<K,V> e = new Entry<>(hash, key, value, old);
table[bucketIndex] = e;
// 2.在双向链表的尾部插入新的entry
e.addBefore(header);
size++;
}
上述代码中用到了addBefore()方法将新entry e插入到双向链表头引用header的前面,这样e就成为双向链表中的最后一个元素。addBefore()的代码如下:
// LinkedHashMap.Entry.addBefor(),将this插入到existingEntry的前面
private void addBefore(Entry<K,V> existingEntry) {
after = existingEntry;
before = existingEntry.before;
before.after = this;
after.before = this;
}
remove()
remove(Object key)的作用是删除key值对应的entry,该方法的具体逻辑是在removeEntryForKey(Object key)里实现的。removeEntryForKey()方法会首先找到key值对应的entry,然后删除该entry(修改链表的相应引用)。查找过程跟get()方法类似。
注意,这里的删除也有两重含义:
从table的角度看,需要将该entry从对应的bucket里删除,如果对应的冲突链表不空,需要修改冲突链表的相应引用。
从header的角度来看,需要将该entry从双向链表中删除,同时修改链表中前面以及后面元素的相应引用。

removeEntryForKey()对应的代码如下:
// LinkedHashMap.removeEntryForKey(),删除key值对应的entry
final Entry<K,V> removeEntryForKey(Object key) {
......
int hash = (key == null) ? 0 : hash(key);
int i = indexFor(hash, table.length);// hash&(table.length-1)
Entry<K,V> prev = table[i];// 得到冲突链表
Entry<K,V> e = prev;
while (e != null) {// 遍历冲突链表
Entry<K,V> next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {// 找到要删除的entry
modCount++; size--;
// 1. 将e从对应bucket的冲突链表中删除
if (prev == e) table[i] = next;
else prev.next = next;
// 2. 将e从双向链表中删除
e.before.after = e.after;
e.after.before = e.before;
return e;
}
prev = e; e = next;
}
return e;
}
LinkedHashSet
LinkedHashSet是对LinkedHashMap的简单包装,对LinkedHashSet的函数调用都会转换成合适的LinkedHashMap方法,因此LinkedHashSet的实现非常简单
public class LinkedHashSet<E>
extends HashSet<E>
implements Set<E>, Cloneable, java.io.Serializable {
......
// LinkedHashSet里面有一个LinkedHashMap
public LinkedHashSet(int initialCapacity, float loadFactor) {
map = new LinkedHashMap<>(initialCapacity, loadFactor);
}
......
public boolean add(E e) {//简单的方法转换
return map.put(e, PRESENT)==null;
}
......
}
关于作者
来自一线程序员Seven的探索与实践,持续学习迭代中~
本文已收录于我的个人博客:https://www.seven97.top
公众号:seven97,欢迎关注~
LinkedHashMap原理详解—从LRU缓存机制说起的更多相关文章
- 详解ASP.NET缓存机制
文中对ASP.NET的缓存机制进行了简述,ASP.NET中的缓存极大的简化了开发人员的使用,如果使用得当,程序性能会有客观的提升.缓存是在内存存储数据的一项技术,也是ASP.NET中提供的重要特性之一 ...
- Non-local Neural Networks 原理详解及自注意力机制思考
Paper:https://arxiv.org/abs/1711.07971v1 Author:Xiaolong Wang, Ross Girshick, Abhinav Gupta, Kaiming ...
- 【转】VLAN原理详解
1.为什么需要VLAN 1.1 什么是VLAN? VLAN(Virtual LAN),翻译成中文是“虚拟局域网”.LAN可以是由少数几台家用计算机构成的网络,也可以是数以百计的计算机构成的企业网络.V ...
- VLAN原理详解[转载] 网桥--交换机---路由器
来自:http://blog.csdn.net/phunxm/article/details/9498829 一.什么是桥接 桥接工作在OSI网络参考模型的第二层数据链路层,是一种以 ...
- 通过 JFR 与日志深入探索 JVM - TLAB 原理详解
全系列目录:通过 JFR 与日志深入探索 JVM - 总览篇 什么是 TLAB? TLAB(Thread Local Allocation Buffer)线程本地分配缓存区,这是一个线程专用的内存分配 ...
- epoll原理详解及epoll反应堆模型
本文转载自epoll原理详解及epoll反应堆模型 导语 设想一个场景:有100万用户同时与一个进程保持着TCP连接,而每一时刻只有几十个或几百个TCP连接是活跃的(接收TCP包),也就是说在每一时刻 ...
- Spring框架系列(7) - Spring IOC实现原理详解之IOC初始化流程
上文,我们看了IOC设计要点和设计结构:紧接着这篇,我们可以看下源码的实现了:Spring如何实现将资源配置(以xml配置为例)通过加载,解析,生成BeanDefination并注册到IoC容器中的. ...
- SSL/TLS 原理详解
本文大部分整理自网络,相关文章请见文后参考. SSL/TLS作为一种互联网安全加密技术,原理较为复杂,枯燥而无味,我也是试图理解之后重新整理,尽量做到层次清晰.正文开始. 1. SSL/TLS概览 1 ...
- 锁之“轻量级锁”原理详解(Lightweight Locking)
大家知道,Java的多线程安全是基于Lock机制实现的,而Lock的性能往往不如人意. 原因是,monitorenter与monitorexit这两个控制多线程同步的bytecode原语,是JVM依赖 ...
- 节点地址的函数list_entry()原理详解
本节中,我们继续讲解,在linux2.4内核下,如果通过一些列函数从路径名找到目标节点. 3.3.1)接下来查看chached_lookup()的代码(namei.c) [path_walk()> ...
随机推荐
- 启动数据分析软件SPSS17遭遇的两弹窗解决方案
问题描述 朋友请我帮她安装 SPSS17 这款软件,我寻思这是啥软件,谷歌一下,发现是一个数据分析工具. 在一系列的下一步.确定后,打开时,第 1 个惊喜弹窗来了: [弹窗内容]应用程序无法启动,因为 ...
- Known框架实战演练——进销存数据结构
系统主要包含商品信息.商业伙伴(客户.供应商)信息.业务单表头信息.业务单表体信息.对账单表头信息.对账单表体信息. 1. 商品信息(JxGoods) 该表用于存储公司商品信息. 名称 代码 类型 长 ...
- mysql 主从复制 + thinkphp 读写分离
好处:加快查询速度.数据库热备份等 注意:要跨服务器,先准备一个虚拟机或者docker,同一个服务器意义不大,而且风险大. 注意:本文档学习原理使用,线上可使用阿里云rds自带的读写分离 主从复制: ...
- .NET 控件转图片
Windows应用开发有很多场景需要动态获取控件显示的图像,即控件转图片,用于其它界面的显示.传输图片数据流.保存为本地图片等用途. 下面分别介绍下一些实现方式以及主要使用场景 RenderTarge ...
- redis如何实现主从同步
redis实现主从同步分为两种:全量同步和增量同步:第一次连入集群的slave需要进行全量同步,那些断开后重连的slave需要进行增量同步 每个redis都有自己的replid,他们是master的标 ...
- Linux中scanf类型匹配错误,特指scanf("%d", &c ) ,导致死循环的解决方法 —— fflush(stdin)和getchar()的使用
如题,朋友领导的孩子大学作业是个C语言编写的管理信息系统发来要我给改改,原代码的配置环境是Windows的C环境,由于10多年没有搞过Windows下的C语言了于是换上了Ubuntu18.04的系统上 ...
- vscode设置字体大小
1.背景 2.设置编辑器字体大小 3.设置窗口字体大小 完美!
- Java核心编程-第一卷
不要在程序中使用char类型 boolean: 两个值 true false 逻辑判断 整形布尔之间不能转换
- RabbitMq消息可靠性之回退模式 通俗易懂 超详细 【内含案例】
RabbitMq保证消息可靠性之回退模式 介绍 生产者生产的消息没有正确的到达队列就会触发回退模式,进行二次发送 前提 完成SpringBoot 整合 RabbitMq 中的Topic通配符模式 一. ...
- springboot解析自定义yml
springboot解析自定义yml 在实际项目开发中我们经常需要用到一些自定义配置,并且希望单独配置,方便维护,现在介绍下方式: 方式一手动加载 对于一些不变动的配置,写死在项目中维护,如下 然后在 ...