\(\Huge{割点}\)

  • \(无向图割点判定法则\)

    当遍历到一个点x时,这个点为割点的情况有两种:

    • 第一种是该节点为根节点且子节点数>=2,必导致两个子节点不连通;
    • 第二种是该节点不为根节点,且 \(low[i]>=dfn[x]\),即子节点i可回溯到的最早的点不早于x点,那么删去x一定导致x的子节点不连通;
    • 反之,若 \(low[i]<dfn[x]\),则说明i能绕行到比x更早的点,则x不是割点;(即环内的点割不掉);

//无向图割点模板
#include<bits/stdc++.h>
#define int long long
#define endl '\n'
#define N 20001
using namespace std;
template<typename Tp> inline void read(Tp&x)
{
x=0;register bool f=1;
register char c=getchar();
for(;c<'0'||c>'9';c=getchar()) if(c=='-') f=0;
for(;'0'<=c&&c<='9';c=getchar()) x=(x<<1)+(x<<3)+(c^48);
x=(f?x:~x+1);
}
int n,m,a,b,tot,root,ans,dfn[N],low[N];
bool cut[N];
vector<int> e[N];
void tarjan(int x)
{
dfn[x]=low[x]=++tot;
int child=0;
for(int y:e[x])
if(!dfn[y])
{
tarjan(y),
low[x]=min(low[x],low[y]);
if(low[y]>=dfn[x])
{
child++;
if(x!=root||child>1) cut[x]=1;
}
}
else low[x]=min(low[x],dfn[y]);
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
read(n),read(m);
while(m--)
read(a),read(b),
e[a].push_back(b),
e[b].push_back(a);
for(root=1;root<=n;root++)
if(!dfn[root]) tarjan(root);
for(int i=1;i<=n;i++) if(cut[i]) ans++;
cout<<ans<<endl;
for(int i=1;i<=n;i++) if(cut[i]) cout<<i<<' ';
}
  • 样例输入:

    7 10

    1 2

    2 3

    3 4

    2 4

    1 4

    1 5

    5 6

    5 8

    7 8

    5 7
  • 样例输出

    2

    1 5

\(\Huge{割边}\)

  • \(无向图的割边判定法则\)

    • 在遍历到一个点x 的子节点y,满足 \(low[y]>dfn[x]\),则 \((x,y)\) 这条边就是割边;
    • \(low[y]>dfn[x]\) ,说明不经过 \((x,y)\) ,y无法到达比x更早的点,故割掉这条边;
    • 反之,若 \(low[y]<=dfn[x]\),则y能够到达x或比x更早的点,\((x,y)\) 就不是割边,即环内没有割边;
    • \(注意事项:\)
      • 求桥的时候,议案为边是无向的,所以父亲与孩子的关系也要自己规定一下,正常的 $ else low[x]=min(low[x],low[y])$ 应改为 $ else if(y!=fa) low[x]=min(low[x],low[y])$;因为如果y是x的父亲,这条无向边就被误认为是环了;
      • 找桥的时候,有重边的一定不是桥;





        割边是(1,2)和(1,5)。
  • 板子:洛谷 P1656 炸铁路
  • 题目描述

    A国要使B国的铁路系统瘫痪,要炸毁一条铁路使其铁路无法全部联通,问可炸毁那一条铁路?
  • 输入格式

    第一行 \(n,m\) (\(1<=n<=150,1<=m<=5000\)),分别表示n个城市和m条铁路。

    以下m行,每行 \(a,b\) ,表示城市a和城市b间有铁路直接联通。
  • 输出格式

    输出若干行,每行 \(a,b\) ,其中 \(a<b\) ,表示\((a,b)\)是 \(key road\) .

    请注意:输出时,所有的数对必须按照a从小到大排序输出,若a相同,根据b从小到大输出。
  • 代码实现:
//无向图割边模板,炸铁路
#include<bits/stdc++.h>
#define int long long
#define endl '\n'
#define N 200
#define M 20001
using namespace std;
template<typename Tp> inline void read(Tp&x)
{
x=0;register bool f=1;
register char c=getchar();
for(;c<'0'||c>'9';c=getchar()) if(c=='-') f=0;
for(;'0'<=c&&c<='9';c=getchar()) x=(x<<1)+(x<<3)+(c^48);
x=(f?x:~x+1);
}
int n,m,a,b,tot,ans,dfn[N],low[N];
bool v[N][N],again[N][N];
vector<int> e[M];
struct aa{int l,r;}s[M];
bool cmp(aa s1,aa s2){if(s1.l==s2.l) return s1.r<s2.r;return s1.l<s2.l;}
void tarjan(int x,int fa)
{
dfn[x]=low[x]=++tot;
for(int y:e[x])
if(!dfn[y])
{
tarjan(y,x),
low[x]=min(low[x],low[y]);
if(low[y]>dfn[x]) s[++ans]=(aa){x,y};
}
else if(y!=fa||again[x][y]) low[x]=min(low[x],dfn[y]);//重边一定不是割边
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
read(n),read(m);
while(m--)
{
read(a),read(b);
if(v[a][b])
{
again[a][b]=again[b][a]=1;//判断重边
continue;
}
v[a][b]=v[b][a]=1,
e[a].push_back(b),
e[b].push_back(a);
}
for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i,i);
stable_sort(s+1,s+1+ans,cmp);
for(int i=1;i<=ans;i++) cout<<s[i].l<<' '<<s[i].r<<endl;
}
  • 样例输入

    7 10

    1 2

    2 3

    2 4

    3 4

    1 5

    5 6

    5 7

    7 8

    5 8

    6 5
  • 样例输出

    1 2

    1 5

tarjan无向图割点与割边板子的更多相关文章

  1. 图论分支-Tarjan初步-割点和割边

    所谓割点(顶)割边,我们引进一个概念 割点:删掉它之后(删掉所有跟它相连的边),图必然会分裂成两个或两个以上的子图. 割边(桥):删掉一条边后,图必然会分裂成两个或两个以上的子图,又称桥. 这样大家就 ...

  2. tarjan求割点与割边

    tarjan求割点与割边 洛谷P3388 [模板]割点(割顶) 割点 解题思路: 求割点和割点数量模版,对于(u,v)如果low[v]>=dfn[u]那么u为割点,特判根结点,若根结点子树有超过 ...

  3. hihoCoder 1183 连通性一·割边与割点(Tarjan求割点与割边)

    #1183 : 连通性一·割边与割点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 还记得上次小Hi和小Ho学校被黑客攻击的事情么,那一次攻击最后造成了学校网络数据的丢 ...

  4. Tarjan在图论中的应用(二)——用Tarjan来求割点与割边

    前言:\(Tarjan\) 求割点和割边建立在 \(Tarjan\)算法的基础之上,因此建议在看这篇博客之前先去学一学\(Tarjan\). 回顾\(Tarjan\)中各个数组的定义 首先,我们来回顾 ...

  5. 『Tarjan算法 无向图的割点与割边』

    无向图的割点与割边 定义:给定无相连通图\(G=(V,E)\) 若对于\(x \in V\),从图中删去节点\(x\)以及所有与\(x\)关联的边后,\(G\)分裂为两个或以上不连通的子图,则称\(x ...

  6. Tarjan无向图的割点和桥(割边)全网详解&算法笔记&通俗易懂

    更好的阅读体验&惊喜&原文链接 感谢@yxc的腿部挂件 大佬,指出本文不够严谨的地方,万分感谢! Tarjan无向图的割点和桥(割边) 导言 在掌握这个算法前,咱们有几个先决条件. [ ...

  7. Tarjan 强连通分量 及 双联通分量(求割点,割边)

    Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) ...

  8. Tarjan 算法求割点、 割边、 强联通分量

    Tarjan算法是一个基于dfs的搜索算法, 可以在O(N+M)的复杂度内求出图的割点.割边和强联通分量等信息. https://www.cnblogs.com/shadowland/p/587225 ...

  9. tarjan求割点割边的思考

    这个文章的思路是按照这里来的.这里讨论的都是无向图.应该有向图也差不多. 1.如何求割点 首先来看求割点.割点必须满足去掉其以后,图被分割.tarjan算法考虑了两个: 根节点如果有两颗及以上子树,它 ...

  10. POJ1144 tarjan+网络中割点与割边的数量

    题目链接:http://poj.org/problem?id=1144 割点与割边的数量我们可以通过tarjan的思想从一个点开始对其余点进行访问.访问的顺序构成一棵dfs树,其中根节点到任何一个结点 ...

随机推荐

  1. C++的编译链接与在vs中build提速

    通过gcc或msvc,clang等编译器编译出来的C++源文件是.o文件.在windows上也就是PE文件,linux为ELF文件,在这一步中,调用其它代码文件中的函数的函数地址是未知的(00000) ...

  2. YShow性能测试平台搭建

    ShowSlow安装 ShowSlow是一个YSlow性能数据收集平台,用于将收集的性能数据 ShowSlow是用php实现的,所以我们需要搭建一台服务器来接收YSlow数据 我搭建的环境是:ubun ...

  3. 自定义注解,实现请求缓存【Spring Cache】

    前言 偶尔看到了spring cache的文章,我去,实现原理基本相同,哈哈,大家可以结合着看看. 简介 实际项目中,会遇到很多查询数据的场景,这些数据更新频率也不是很高,一般我们在业务处理时,会对这 ...

  4. KRPANO资源分析工具下载网展全景图

    示:目前分析工具中的全景图下载功能将被极速全景图下载大师替代,相比分析工具,极速全景图下载大师支持更多的网站(包括各类KRPano全景网站,和百度街景) 详细可以查看如下的链接: 极速全景图下载大师官 ...

  5. python url中文转码_python实现转换url编码的方法

    python url中文转码_python实现转换url编码的方法 urllib.parse命令:url编码转换 >>> import urllib.parse >>&g ...

  6. Nacos启动报错:Please set the JAVA_HOME variable in your environment, We need java(x64) jdk8 or later

    可能原因: 1.JDK版本过低(应不低于1.8) 2.未设置jdk环境变量(可能性低) 3.jdk环境变量设置不适配nacos(博主就是这个原因) 解决方案: 1.直接在startup.cmd文件中设 ...

  7. 【Cucumber】关于BDD自然语言自动化测试的语法总结

    1.关键字 - Feature 每一个.feature文件必须以关键字Feature开始,Feature关键字之后可以添加该feature的描述,其作用类似于注释,仅仅为了便于理解沟通交流,描述内容中 ...

  8. 【最佳实践】MongoDB导出导入数据

    首先说一下这个3节点MongoDB集群各个维度的数据规模: 1.dataSize: 1.9T 2.storageSize: 600G 3.全量备份-加压缩开关:186G,耗时 8h 4.全量备份-不加 ...

  9. 记一次基于 PowerShell 的 Git 自动化部署 Java 多服务实践

    前言 有这么一个自动化部署的需求,凑巧 git 还直接建立在测试服务器上,部署后可以直接在测试服务器上演示 步骤 建立 Git 仓库 与一般的 Git 部署一样,区别是需要添加 --bare 开关,这 ...

  10. Spring Boot中发送邮件时,如何让发件人显示别名

    之前,我们通过一系列文章,介绍了如何在Spring Boot中发送邮件: 发送邮件 添加附件 引用静态资源 邮件模版 已经包含了大部分的应用场景.但最近DD在做YouTube中文配音的时候,碰到一个问 ...