【scipy 基础】--图像处理
SciPy库本身是针对科学计算而不是图像处理的,只是图像处理也包含了很多数学计算,
所以Scipy也提供了一个专门的模块ndimage用于图像处理。
ndimage模块提供的功能包括输入/输出图像、显示图像、基本操作(如裁剪、翻转、旋转等)、图像过滤(如去噪、锐化等)、图像分割、分类、特征提取以及注册/配准等任务。
这个模块支持多种图像格式的读取和写入,使得对图像的处理变得方便快捷。
1. 主要功能
虽然图像处理不是Scipy的主要目的,Scipy中也提供了70多个各类图像处理函数。
| 类别 | 主要函数 | 说明 |
|---|---|---|
| 过滤器 | 包含convolve等20多个函数 | 各类卷积和滤波相关的计算函数 |
| 傅立叶滤波器 | 包含fourier_ellipsoid等4个函数 | 多维椭球傅里叶,高斯傅里叶等滤波器 |
| 图像插值 | 包含affine_transform等8个函数 | 图像的反射变换,移动,旋转等相关函数 |
| 图像测量 | 包含center_of_mass等将近20个函数 | 计算图像几何特征的相关函数 |
| 形态学 | 包含binary_closing等20多个函数 | 图像的侵蚀,膨胀,二元开闭运算等等 |
图像处理底层函数专业性较强,下面结合图片演示一些比较直观的例子。
2. 边缘检测
图像边缘检测在计算机视觉和图像处理中是非常重要的任务之一。
边缘是图像中像素值发生显著变化的地方,它可以提供有关图像的重要信息,例如物体的轮廓、边界等。
ndimage模块中提供了多种算法来检测边缘,下面演示三种不同的边缘检测算法的效果:
(示例中所用的图片是维基百科上找的一个python logo)
2.1. sobel算法
import matplotlib.pyplot as plt
import cv2
from scipy import ndimage
image = plt.imread("d:/share/python-logo.png")
# 图像灰度化
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 使用索贝尔边缘检测算法
name = "sobel"
edges = ndimage.sobel(gray)
# 显示原始图像和边缘检测结果
fig, ax = plt.subplots(1, 3, figsize=(8, 4))
ax[0].imshow(image)
ax[0].set_title("原始图像")
ax[1].imshow(gray, cmap="gray")
ax[1].set_title("灰度图像")
ax[2].imshow(edges, cmap="gray")
ax[2].set_title("边缘检测({}算法)".format(name))
plt.show()

2.2. prewitt算法
代码和上面的类似,不同的部分就下面两行。
# 使用prewitt边缘检测算法
name = "prewitt"
edges = ndimage.prewitt(gray)

2.3. laplace算法
上面两种算法的效果看上去很类似,laplace算法的结果看上去比上面两种效果更好一些。
name = "laplace"
edges = ndimage.laplace(gray)

3. 侵蚀和膨胀
侵蚀和膨胀是最基本的两种图像形态学操作,它们的作用用来增强目标特征。
仍然使用上面的python logo图片,演示侵蚀和膨胀的操作。
import matplotlib.pyplot as plt
import cv2
from scipy import ndimage
image = plt.imread("d:/share/python-logo.png")
# 图像灰度化
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 图像侵蚀
structure = ndimage.generate_binary_structure(2, 2)
erosion = ndimage.binary_erosion(image, structure)
# 图像膨胀
dilation = ndimage.binary_dilation(image, structure)
# 显示原始图像、侵蚀图像和膨胀图像
fig, ax = plt.subplots(1, 3, figsize=(8, 4))
ax[0].imshow(image, cmap="gray")
ax[0].set_title("灰度图像")
ax[1].imshow(erosion, cmap="gray")
ax[1].set_title("图像--侵蚀")
ax[2].imshow(dilation, cmap="gray")
ax[2].set_title("图像--膨胀")
plt.show()

简单来说,侵蚀操作会扩张图像中黑色的区域,反之,膨胀操作会扩张图像中白色的区域。
直观上来看的话,侵蚀变瘦了,膨胀变胖了。
4. 总结
Scipy的图像模块本质上是把图像当作数组来处理,
虽然它不是专门的图像处理库,不过它处理速度很快,且和numpy等库结合紧密,
经常处理图像的朋友可以把它当成一个辅助的工具。
【scipy 基础】--图像处理的更多相关文章
- SciPy 基础功能
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- 基础图像处理之混合空间增强——(Java:拉普拉斯锐化、Sobel边缘检测、均值滤波、伽马变换)
相信看过冈萨雷斯第三版数字图像处理的童鞋都知道,里面涉及到了很多的基础图像处理的算法,今天,就专门借用其中一个混合空间增强的案例,来将常见的几种图像处理算法集合起来,看能发生什么样的化学反应 首先,通 ...
- Tensorflow深度学习之十二:基础图像处理之二
Tensorflow深度学习之十二:基础图像处理之二 from:https://blog.csdn.net/davincil/article/details/76598474 首先放出原始图像: ...
- SciPy 图像处理
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- python-数据处理的包Numpy,scipy,pandas,matplotlib
一,NumPy包(numeric python,数值计算) 该包主要包含了存储单一数据类型的ndarry对象的多维数组和处理数组能力的函数ufunc对象.是其它包数据类型的基础.只能处理简单的数据分析 ...
- SciPy 信号处理
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 统计
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 线性代数
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 优化
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 积分
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
随机推荐
- 仪酷LabVIEW AI视觉工具包及开放神经网络交互工具包常见问题解答
前言 哈喽,各位朋友,好久不见~ 之前给大家分享了基于LabVIEW开发的AI视觉工具包及开放神经网络交互工具包,不少朋友私信说在安装和使用过程中会遇到一些问题,今天我们就集中回复一下大家问到最多的问 ...
- CentOS上安装Redis的两种方式
今天小编给大家介绍下,如何在CentOS上安装Redis.通常有两种方式:第一种是通过下载源码并编译来安装,第二种是通过仓库直接安装.相较而言,第二种方式更直截了当,但小编更倾向第一种. 一.通过源码 ...
- 关于"覆盖问题”的反思
[HAOI2007]覆盖问题 题目描述 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定 用3个L*L的 ...
- Django2.2:UnicodeDecodeError: 'gbk' codec can't decode byte 0xa6 in position 9737: illegal multibyte sequence
报错截图: 解决方案: 打开django/views下的debug.py文件,转到line331行: with Path(CURRENT_DIR, 'templates', 'technical_50 ...
- json虽然简单,但这些细节你未必知道
基本介绍 JSON的全称是JavaScript Object Notation,它并不是编程语言,而是一种可以在服务器和客户端之间传输的数据格式,本来是JavaScript的子集,但现在已独立存在于各 ...
- [selenium]点击元素出现的obscure问题
前言 我们一般使用如下方式点击元素: elem = driver.find_element(...) elem.click() # 或者使用带等待条件的方式 elem = WebDriverWait( ...
- 痞子衡嵌入式:AppCodeHub - 一站网罗恩智浦MCU应用程序
近日,恩智浦官方隆重上线了应用程序代码中心(Application Code Hub,简称 ACH),这是恩智浦 MCUXpresso 软件生态的一个重要组成部分.痞子衡之所以要如此激动地告诉大家这个 ...
- Java BigDecimal 分析
1.使用理由: Double类和Float类可以对16位有效数字的数进行精确运算,但对于超过16位有效数字的数,会丢失精度.所以使用BigDecimal类来精确计算超过16位有效数字的数. 2.引入包 ...
- Vue3 vite:is a JavaScript file. Did you mean to enable the 'allowJs' option?
描述 今天在vue3+vite下进行打包时,突然vscode报了一个error. 大概的意识是询问是否启用"allowJS"选项,因为该文件在程序内是指定用于编译的根文件. 提示信 ...
- JS逆向实战21——某查查webpack密码加密
声明 本文章中所有内容仅供学习交流,抓包内容.敏感网址.数据接口均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关,若有侵权,请联系我立即删除! 网站 aHR0cHM6Ly ...