[转帖]LSM树详解
https://zhuanlan.zhihu.com/p/181498475
LSM树(Log-Structured-Merge-Tree)的名字往往会给初识者一个错误的印象,事实上,LSM树并不像B+树、红黑树一样是一颗严格的树状数据结构,它其实是一种存储结构,目前HBase,LevelDB,RocksDB这些NoSQL存储都是采用的LSM树。
LSM树的核心特点是利用顺序写来提高写性能,但因为分层(此处分层是指的分为内存和文件两部分)的设计会稍微降低读性能,但是通过牺牲小部分读性能换来高性能写,使得LSM树成为非常流行的存储结构。
1、LSM树的核心思想

如上图所示,LSM树有以下三个重要组成部分:
1) MemTable
MemTable是在内存中的数据结构,用于保存最近更新的数据,会按照Key有序地组织这些数据,LSM树对于具体如何组织有序地组织数据并没有明确的数据结构定义,例如Hbase使跳跃表来保证内存中key的有序。
因为数据暂时保存在内存中,内存并不是可靠存储,如果断电会丢失数据,因此通常会通过WAL(Write-ahead logging,预写式日志)的方式来保证数据的可靠性。
2) Immutable MemTable
当 MemTable达到一定大小后,会转化成Immutable MemTable。Immutable MemTable是将转MemTable变为SSTable的一种中间状态。写操作由新的MemTable处理,在转存过程中不阻塞数据更新操作。
3) SSTable(Sorted String Table)
有序键值对集合,是LSM树组在磁盘中的数据结构。为了加快SSTable的读取,可以通过建立key的索引以及布隆过滤器来加快key的查找。

这里需要关注一个重点,LSM树(Log-Structured-Merge-Tree)正如它的名字一样,LSM树会将所有的数据插入、修改、删除等操作记录(注意是操作记录)保存在内存之中,当此类操作达到一定的数据量后,再批量地顺序写入到磁盘当中。这与B+树不同,B+树数据的更新会直接在原数据所在处修改对应的值,但是LSM数的数据更新是日志式的,当一条数据更新是直接append一条更新记录完成的。这样设计的目的就是为了顺序写,不断地将Immutable MemTable flush到持久化存储即可,而不用去修改之前的SSTable中的key,保证了顺序写。
因此当MemTable达到一定大小flush到持久化存储变成SSTable后,在不同的SSTable中,可能存在相同Key的记录,当然最新的那条记录才是准确的。这样设计的虽然大大提高了写性能,但同时也会带来一些问题:
1)冗余存储,对于某个key,实际上除了最新的那条记录外,其他的记录都是冗余无用的,但是仍然占用了存储空间。因此需要进行Compact操作(合并多个SSTable)来清除冗余的记录。
2)读取时需要从最新的倒着查询,直到找到某个key的记录。最坏情况需要查询完所有的SSTable,这里可以通过前面提到的索引/布隆过滤器来优化查找速度。
2、LSM树的Compact策略
从上面可以看出,Compact操作是十分关键的操作,否则SSTable数量会不断膨胀。在Compact策略上,主要介绍两种基本策略:size-tiered和leveled。
不过在介绍这两种策略之前,先介绍三个比较重要的概念,事实上不同的策略就是围绕这三个概念之间做出权衡和取舍。
1)读放大:读取数据时实际读取的数据量大于真正的数据量。例如在LSM树中需要先在MemTable查看当前key是否存在,不存在继续从SSTable中寻找。
2)写放大:写入数据时实际写入的数据量大于真正的数据量。例如在LSM树中写入时可能触发Compact操作,导致实际写入的数据量远大于该key的数据量。
3)空间放大:数据实际占用的磁盘空间比数据的真正大小更多。上面提到的冗余存储,对于一个key来说,只有最新的那条记录是有效的,而之前的记录都是可以被清理回收的。
1) size-tiered 策略

size-tiered策略保证每层SSTable的大小相近,同时限制每一层SSTable的数量。如上图,每层限制SSTable为N,当每层SSTable达到N后,则触发Compact操作合并这些SSTable,并将合并后的结果写入到下一层成为一个更大的sstable。
由此可以看出,当层数达到一定数量时,最底层的单个SSTable的大小会变得非常大。并且size-tiered策略会导致空间放大比较严重。即使对于同一层的SSTable,每个key的记录是可能存在多份的,只有当该层的SSTable执行compact操作才会消除这些key的冗余记录。
2) leveled策略

每一层的总大小固定,从上到下逐渐变大
leveled策略也是采用分层的思想,每一层限制总文件的大小。
但是跟size-tiered策略不同的是,leveled会将每一层切分成多个大小相近的SSTable。这些SSTable是这一层是全局有序的,意味着一个key在每一层至多只有1条记录,不存在冗余记录。之所以可以保证全局有序,是因为合并策略和size-tiered不同,接下来会详细提到。

每一层的SSTable是全局有序的
假设存在以下这样的场景:
1) L1的总大小超过L1本身大小限制:

此时L1超过了最大阈值限制
2) 此时会从L1中选择至少一个文件,然后把它跟L2有交集的部分(非常关键)进行合并。生成的文件会放在L2:

如上图所示,此时L1第二SSTable的key的范围覆盖了L2中前三个SSTable,那么就需要将L1中第二个SSTable与L2中前三个SSTable执行Compact操作。
3) 如果L2合并后的结果仍旧超出L5的阈值大小,需要重复之前的操作 —— 选至少一个文件然后把它合并到下一层:

需要注意的是,多个不相干的合并是可以并发进行的:

leveled策略相较于size-tiered策略来说,每层内key是不会重复的,即使是最坏的情况,除开最底层外,其余层都是重复key,按照相邻层大小比例为10来算,冗余占比也很小。因此空间放大问题得到缓解。但是写放大问题会更加突出。举一个最坏场景,如果LevelN层某个SSTable的key的范围跨度非常大,覆盖了LevelN+1层所有key的范围,那么进行Compact时将涉及LevelN+1层的全部数据。
3、总结
LSM树是非常值得了解的知识,理解了LSM树可以很自然地理解Hbase,LevelDb等存储组件的架构设计。ClickHouse中的MergeTree也是LSM树的思想,Log-Structured还可以联想到Kafka的存储方式。
虽然介绍了上面两种策略,但是各个存储都在自己的Compact策略上面做了很多特定的优化,例如Hbase分为Major和Minor两种Compact,这里不再做过多介绍,推荐阅读文末的RocksDb合并策略介绍。
PS:封面是在当时百度搜索lsm树的截图,真实截图,非PS。
[转帖]LSM树详解的更多相关文章
- LSM 树详解
LSM树(Log Structured Merged Tree)的名字往往给人一个错误的印象, 实际上LSM树并没有严格的树状结构. LSM 树的思想是使用顺序写代替随机写来提高写性能,与此同时会略微 ...
- 数据结构图文解析之:AVL树详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- trie字典树详解及应用
原文链接 http://www.cnblogs.com/freewater/archive/2012/09/11/2680480.html Trie树详解及其应用 一.知识简介 ...
- Linux DTS(Device Tree Source)设备树详解之二(dts匹配及发挥作用的流程篇)【转】
转自:https://blog.csdn.net/radianceblau/article/details/74722395 版权声明:本文为博主原创文章,未经博主允许不得转载.如本文对您有帮助,欢迎 ...
- JavaScript---Dom树详解,节点查找方式(直接(id,class,tag),间接(父子,兄弟)),节点操作(增删改查,赋值节点,替换节点,),节点属性操作(增删改查),节点文本的操作(增删改查),事件
JavaScript---Dom树详解,节点查找方式(直接(id,class,tag),间接(父子,兄弟)),节点操作(增删改查,赋值节点,替换节点,),节点属性操作(增删改查),节点文本的操作(增删 ...
- 线段树详解 (原理,实现与应用)(转载自:http://blog.csdn.net/zearot/article/details/48299459)
原文地址:http://blog.csdn.net/zearot/article/details/48299459(如有侵权,请联系博主,立即删除.) 线段树详解 By 岩之痕 目录: 一:综述 ...
- Linux dts 设备树详解(二) 动手编写设备树dts
Linux dts 设备树详解(一) 基础知识 Linux dts 设备树详解(二) 动手编写设备树dts 文章目录 前言 硬件结构 设备树dts文件 前言 在简单了解概念之后,我们可以开始尝试写一个 ...
- Linux dts 设备树详解(一) 基础知识
Linux dts 设备树详解(一) 基础知识 Linux dts 设备树详解(二) 动手编写设备树dts 文章目录 1 前言 2 概念 2.1 什么是设备树 dts(device tree)? 2. ...
- B树、B+树详解
B树.B+树详解 B树 前言 首先,为什么要总结B树.B+树的知识呢?最近在学习数据库索引调优相关知识,数据库系统普遍采用B-/+Tree作为索引结构(例如mysql的InnoDB引擎使用的B+树 ...
- AVL树详解
AVL树 参考了:http://www.cppblog.com/cxiaojia/archive/2012/08/20/187776.html 修改了其中的错误,代码实现并亲自验证过. 平衡二叉树(B ...
随机推荐
- Java 新技术:虚拟线程使用指南(二)
虚拟线程是在 Java 21 版本中实现的一种轻量级线程.它由 JVM 进行创建以及管理.虚拟线程和传统线程(我们称之为平台线程)之间的主要区别在于,我们可以轻松地在一个 Java 程序中运行大量.甚 ...
- C++ 惯用法之 RAII
RAII(Resource Acquisition Is Initialization)资源获取即初始化,是 C++ 中最基本.应用最广范的惯用法(idiom)之一. RAII 的基本思想是通过构造/ ...
- 微信小程序数组
常用函数 concat(): 连接两个或多个数组,返回连接后的新数组. 示例:const arr1 = [1, 2, 3]; const arr2 = [4, 5, 6]; const arr3 = ...
- LeetCode 图篇
743. 网络延迟时间 有 N 个网络节点,标记为 1 到 N. 给定一个列表 times,表示信号经过有向边的传递时间. times[i] = (u, v, w),其中 u 是源节点,v 是目标节点 ...
- 企业研发治理转型利器:华为云发布流水线服务CodeArts Pipeline
摘要:2月27日,华为云正式发布流水线服务CodeArts Pipeline,旨在提升编排体验,开放插件平台,以及提供标准化的DevOps企业治理模型,将华为公司内的优秀研发实践赋能给伙伴和客户. 本 ...
- 这项评测,华为云GaussDB(for MySQL)顺利通过
摘要:近日,中国信息通信研究院(简称"中国信通院")公布了第十五批"可信数据库"评测结果.华为云GaussDB(for MySQL)凭借过硬的技术实力顺利通过& ...
- DevSecOps“内置安全保护”,让软件研发“天生健康”
摘要:我们主要是围绕安全架构设计保证安全落地有法可依,进行威胁建模让安全落地有迹可循.做好隐私和敏感数据保护让安全落地在每一个细节和实处这几个方面进行阐述. 本文分享自华为云社区<DevSecO ...
- COG云原生优化遥感影像,瓦片切分的最佳实践
摘要:云上遥感影像文件Cloud optimized GeoTIFF(COG)格式的详细介绍,大量数据上云面临的挑战,并分享了获得云原生影像最佳性能的实践经验. 本文分享自华为云社区<COG云原 ...
- git clone 出现fatal: unable to access ‘https://github 错误解决方法
git clone 遇到问题:fatal: unable to access 'https://github.comxxxxxxxxxxx': Failed to connect to xxxxxxx ...
- 如何用AB测试完善产品激励体系
更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 用户激励体系,也称用户激励机制,是为了让用户持续使用产品,而设计的一套对应规则.在用户激励体系建立过程中,产品可以 ...