【爬虫+情感判定+饼图+Top10高频词+词云图】"王心凌"热门弹幕python舆情分析
一、背景介绍
最近一段时间,王心凌在浪姐3的表现格外突出,唤醒了一大批沉睡中的老粉,纷纷直呼'爷青回'!
针对此热门事件,我用Python的爬虫和情感分析技术,针对小破站的弹幕数据,分析了众多网友弹幕的舆论导向,下面我们来看一下,是如何实现的分析过程。
二、代码讲解-爬虫部分
2.1 分析弹幕接口
首先分析B站弹幕接口。
经过分析,得到的弹幕地址有两种:
第一种:http://comment.bilibili.com/{cid}.xml
第二种:https://api.bilibili.com/x/v1/dm/list.so?oid=
这两种返回的结果一致!但都不全,都是只有部分弹幕!
以B站视频 https://www.bilibili.com/video/BV1qY4y157dz 为例,查看网页源代码,可以找到对应的cid为727777486,所以该视频对应的弹幕接口地址是:https://comment.bilibili.com/727777486.xml

既然这样,就好办了,开始撸代码!
2.2 讲解爬虫代码
首先,导入需要用到的库:
import re # 正则表达式提取文本
import requests # 爬虫发送请求
from bs4 import BeautifulSoup as BS # 爬虫解析页面
import time
import pandas as pd # 存入csv文件
import os
然后,向视频地址发送请求,解析出cid号:
r1 = requests.get(url=v_url, headers=headers)
html1 = r1.text
cid = re.findall('cid=(.*?)&aid=', html1)[0] # 获取视频对应的cid号
print('该视频的cid是:', cid)
根据cid号,拼出xml接口地址,并再次发送请求:
danmu_url = 'http://comment.bilibili.com/{}.xml'.format(cid) # 弹幕地址
print('弹幕地址是:', danmu_url)
r2 = requests.get(danmu_url)
解析xml页面:标签的文本内容为弹幕,标签内p属性值(按逗号分隔)的第四个字段是时间戳:
soup = BS(html2, 'xml')
danmu_list = soup.find_all('d')
print('共爬取到{}条弹幕'.format(len(danmu_list)))
video_url_list = [] # 视频地址
danmu_url_list = [] # 弹幕地址
time_list = [] # 弹幕时间
text_list = [] # 弹幕内容
for d in danmu_list:
data_split = d['p'].split(',') # 按逗号分隔
temp_time = time.localtime(int(data_split[4])) # 转换时间格式
danmu_time = time.strftime("%Y-%m-%d %H:%M:%S", temp_time)
video_url_list.append(v_url)
danmu_url_list.append(danmu_url)
time_list.append(danmu_time)
text_list.append(d.text)
print('{}:{}'.format(danmu_time, d.text))
保存时应注意,为了避免多次写入csv标题头,像这样:

这里,我写了一个处理逻辑,大家看注释,应该能明白:
if os.path.exists(v_result_file): # 如果文件存在,不需写入字段标题
header = None
else: # 如果文件不存在,说明是第一次新建文件,需写入字段标题
header = ['视频地址', '弹幕地址', '弹幕时间', '弹幕内容']
df.to_csv(v_result_file, encoding='utf_8_sig', mode='a+', index=False, header=header) # 数据保存到csv文件
需要注意的是,encoding参数赋值为utf_8_sig,不然csv内容可能会产生乱码,避免踩坑!
三、代码讲解-情感分析部分
3.1 整体思路
针对情感分析需求,我主要做了三个步骤的分析工作:
- 用SnowNLP给弹幕内容打标:积极、消极,并统计占比情况
- 用jieba.analyse分词,并统计top10高频词
- 用WordCloud绘制词云图
首先,导入csv数据,并做数据清洗工作,不再赘述。
下面,正式进入情感分析代码部分:
3.2 情感分析打标
情感分析计算得分值、分类打标,并画出饼图。
# 情感判定
for comment in v_cmt_list:
tag = ''
sentiments_score = SnowNLP(comment).sentiments
if sentiments_score < 0.5:
tag = '消极'
neg_count += 1
elif sentiments_score > 0.5:
tag = '积极'
pos_count += 1
else:
tag = '中性'
mid_count += 1
score_list.append(sentiments_score) # 得分值
tag_list.append(tag) # 判定结果
df['情感得分'] = score_list
df['分析结果'] = tag_list
这里,我设定情感得分值小于0.5为消极,大于0.5为积极,等于0.5为中性。(这个分界线,没有统一标准,根据数据分布情况和分析经验自己设定分界线即可)
情感判定结果:
画出占比饼图的代码:
grp = df['分析结果'].value_counts()
print('正负面评论统计:')
print(grp)
grp.plot.pie(y='分析结果', autopct='%.2f%%') # 画饼图
plt.title('王心凌弹幕_情感分布占比图')
plt.savefig('王心凌弹幕_情感分布占比图.png') # 保存图片
饼图结果:

从占比结果来看,大部分网友还是很认可王心凌的。
3.3 统计top10高频词
代码如下:
# 2、用jieba统计弹幕中的top10高频词
keywords_top10 = jieba.analyse.extract_tags(v_cmt_str, withWeight=True, topK=10)
print('top10关键词及权重:')
pprint(keywords_top10)
这里需要注意,在调用jieba.analyse.extract_tags函数时,要导入的是import jieba.analyse 而不是 import jieba
统计结果为:

3.4 绘制词云图
注意别踩坑:
想要通过原始图片的形状生成词云图,原始图片一定要白色背景(实在没有的话,PS修图修一个吧),否则生成的是满屏词云!!
try:
stopwords = v_stopwords # 停用词
backgroud_Image = np.array(Image.open('王心凌_背景图.png')) # 读取背景图片
wc = WordCloud(
background_color="white", # 背景颜色
width=1500, # 图宽
height=1200, # 图高
max_words=1000, # 最多字数
font_path='/System/Library/Fonts/SimHei.ttf', # 字体文件路径,根据实际情况(Mac)替换
# font_path="C:\Windows\Fonts\simhei.ttf", # 字体文件路径,根据实际情况(Windows)替换
stopwords=stopwords, # 停用词
mask=backgroud_Image, # 背景图片
)
jieba_text = " ".join(jieba.lcut(v_str)) # jieba分词
wc.generate_from_text(jieba_text) # 生成词云图
wc.to_file(v_outfile) # 保存图片文件
print('词云文件保存成功:{}'.format(v_outfile))
except Exception as e:
print('make_wordcloud except: {}'.format(str(e)))
得到的词云图,如下:

和原始图片对比:

3.5 情感分析结论
- 打标结果中,积极和中性评价占约74%,远远大于消极评价!
- top10关键词统计结果中,"哈哈哈"、"啊啊啊"、"王心凌"、"甜心"、"可爱"等好评词汇占据多数!
- 词云图中,"好甜"、"爱"、"甜"、"青春"等好评词看上去更大(词频高)!
综上所述,经分析"王心凌"相关弹幕,得出结论:
众多网友对王心凌的评价都很高,毕竟谁能不爱甜妹呢,"甜心教主"的名号真不是盖的!
四、同步演示视频
演示代码执行过程:https://www.bilibili.com/video/BV1DS4y1v75M
五、附完整源码
附完整源码:公众号"老男孩的平凡之路"后台回复"王心凌"即可获取。
更多源码案例 -> 马哥python说
【爬虫+情感判定+饼图+Top10高频词+词云图】"王心凌"热门弹幕python舆情分析的更多相关文章
- 【爬虫+情感判定+Top10高频词+词云图】"王心凌"热门弹幕python舆情分析
目录 一.背景介绍 二.代码讲解-爬虫部分 2.1 分析弹幕接口 2.2 讲解爬虫代码 三.代码讲解-情感分析部分 3.1 整体思路 3.2 情感分析打标 3.3 统计top10高频词 3.4 绘制词 ...
- 【爬虫+情感判定+Top10高频词+词云图】“刘畊宏“热门弹幕python舆情分析
一.背景介绍 最近一段时间,刘畊宏真是火出了天际,引起一股全民健身的热潮,毕竟锻炼身体,是个好事! 针对此热门事件,我用Python的爬虫和情感分析技术,针对小破站的弹幕数据,分析了众多网友弹幕的舆论 ...
- 【爬虫+情感判定+Top10高频词+词云图】“谷爱凌”热门弹幕python舆情分析
一.背景介绍 最近几天,谷爱凌在冬奥会赛场上夺得一枚宝贵的金牌,为中国队贡献了自己的荣誉! 针对此热门事件,我用Python的爬虫和情感分析技术,针对小破站的弹幕数据,分析了众网友弹幕的舆论导向,下面 ...
- paip.输入法编程---词库多意义条目分割 python实现.
paip.输入法编程---词库多意义条目分割 python实现. ==========子标题 python mysql 数据库操作 多字符分隔,字符串分割 字符列表循环 作者 老哇的爪子 Attil ...
- Java爬取B站弹幕 —— Python云图Wordcloud生成弹幕词云
一 . Java爬取B站弹幕 弹幕的存储位置 如何通过B站视频AV号找到弹幕对应的xml文件号 首先爬取视频网页,将对应视频网页源码获得 就可以找到该视频的av号aid=8678034 还有弹幕序号, ...
- 【爬虫+数据清洗+可视化分析】舆情分析哔哩哔哩"狂飙"的评论
目录 一.背景介绍 二.爬虫代码 2.1 展示爬取结果 2.2 爬虫代码讲解 三.可视化代码 3.1 读取数据 3.2 数据清洗 3.3 可视化 3.3.1 IP属地分析-柱形图 3.3.2 评论时间 ...
- 特朗普退出《巴黎协定》:python词云图舆情分析
1 前言 2017年6月1日,美国特朗普总统正式宣布美国退出<巴黎协定>.宣布退出<巴黎协定>后,特朗普似乎成了“全球公敌”. 特斯拉总裁马斯克宣布退出总统顾问团队 迪士尼董事 ...
- Python爬虫——Python 岗位分析报告
前两篇我们分别爬取了糗事百科和妹子图网站,学习了 Requests, Beautiful Soup 的基本使用.不过前两篇都是从静态 HTML 页面中来筛选出我们需要的信息.这一篇我们来学习下如何来获 ...
- 爬虫实例之使用requests和Beautifusoup爬取糗百热门用户信息
这次主要用requests库和Beautifusoup库来实现对糗百的热门帖子的用户信息的收集,由于糗百的反爬虫不是很严格,也不需要先登录才能获取数据,所以较简单. 思路,先请求首页的热门帖子获得用户 ...
- Python 学习书籍推荐
谁会成为AI 和大数据时代的第一开发语言? 这本已是一个不需要争论的问题.如果说三年前,Matlab.Scala.R.Java 和 Python还各有机会,局面尚且不清楚,那么三年之后,趋势已经非常明 ...
随机推荐
- 3D Object Detection Essay Reading 2024.04.01
Swin Transformer paper: https://arxiv.org/abs/2103.14030 (ICCV 2021) code:https://github.com/microso ...
- #dp#NOIP2020.9.26模拟jerry
题目 Jerry 写下了一个只由非负整数和加减号组成的算式. 它想给这个算式添加合法的括号,使得算式的结果最大. 分析 考场\(O(n^3)\)伪部分分成功爆零, 设\(dp[i][j]\)表示前\( ...
- 使用 GitLab CI/CD 和阿里云 CLI 自动部署前端项目
一.什么是 CI/CD? CI(持续交付)是功能迭代后自动构建.打包.校验代码格式.跑单测.单测覆盖率,常见的就是 Webpack.Rollup.ESLint等. CD(持续部署)是经过 CI 后,代 ...
- 上新啦KIT
HMS Core上新啦!分析服务区服分析全新上线:机器学习服务OCR新增手写识别服务:3D建模续扫能力更新:视频编辑服务支持自定义上传素材--更多#HMS Core#能力可点击网页链接了解. 了解更多 ...
- std::thread 五:打包任务(packaged_task)
#include <iostream> #include <thread> #include <mutex> #include <list> #incl ...
- 【译】Visual Studio 中的 GitHub Copilot:2023年回顾
在快速发展的软件开发世界中,保持领先是至关重要的.在 Visual Studio 中引入AI,特别是 GitHub Copilot,已经彻底改变了开发人员的编码方式.通过将 Copilot 集成到 V ...
- 因果推断review
什么是因果推断? 因果推断(Causal Inference):就是预估对某个对象/群体/人 等 做不做某种干预后产生的结果. 常说'关系不代表因果'. 比如,一项研究表面,吃早餐的女孩比不吃早餐的女 ...
- 如何用vsftpd实现用户不同权限:只能下载,可上传,管理权限等 [仅供参考未亲测]
如何用vsftpd实现用户不同权限:只能下载,可上传,管理权限等 2007-01-29 10:20:09 分类: LINUX 前提条件: 必须安装包:vsftpd-2.0.1-5 ...
- mysql 重新整理——性能下降的原因[四]
前言 什么是性能下降? 其实就是代码运行的环境变了,那么环境变化是什么? 比如cpu上升了,内存满了.有或者表中数量增加了,量变了. 其实这些是dba干的,但是呢,我们也需要去了解下,并且优化我们的c ...
- java调用QQ影音进行截图
import java.awt.Graphics2D; import java.awt.Image; import java.awt.Robot; import java.awt.Toolkit; i ...