SPOJ QTREE Query on a tree 树链剖分+线段树
题目链接:http://www.spoj.com/problems/QTREE/en/
QTREE - Query on a tree
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.
We will ask you to perfrom some instructions of the following form:
- CHANGE i ti : change the cost of the i-th edge to ti
or - QUERY a b : ask for the maximum edge cost on the path from node a to node b
Input
The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000),
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
- The next lines contain instructions "CHANGE i ti" or "QUERY a b",
- The end of each test case is signified by the string "DONE".
There is one blank line between successive tests.
Output
For each "QUERY" operation, write one integer representing its result.
Example
Input:
1 3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE Output:
1
3
题意:给你一颗数,求u到v的路径中最大的边权大小;
思路:线段树单点更新区间查询;
树链剖分板子;
最后把边权往下落,去掉lca那个点的权值;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=2e5+,M=1e6+,inf=1e9+;
const ll INF=1e18+,mod=; ///数组大小
struct edge{
int v,next;
}edge[N<<];
int head[N<<],edg,id,n;
/// 树链剖分 int fa[N],dep[N],son[N],siz[N]; // fa父亲,dep深度,son重儿子,siz以该点为子树的节点个数
int a[N],ran[N],top[N],tid[N]; // tid表示边的标号,top通过重边可以到达最上面的点,ran表示标记tid
int u[N],v[N],w[N];
void init()
{
memset(son,-,sizeof(son));
memset(head,-,sizeof(head));
edg=;
id=;
}
void add(int u,int v)
{
edg++;
edge[edg].v=v;
edge[edg].next=head[u];
head[u]=edg;
}
void dfs1(int u,int fath,int deep)
{
fa[u]=fath;
siz[u]=;
dep[u]=deep;
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].v;
if(v==fath)continue;
dfs1(v,u,deep+);
siz[u]+=siz[v];
if(son[u]==-||siz[v]>siz[son[u]])
son[u]=v;
}
}
void dfs2(int u,int tp)
{
tid[u]=++id;
top[u]=tp;
ran[tid[u]]=u;
if(son[u]==-)return;
dfs2(son[u],tp);
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].v;
if(v==fa[u])continue;
if(v!=son[u])
dfs2(v,v);
}
} /// 线段树
int sum[N<<];
void pushup(int pos)
{
sum[pos]=max(sum[pos<<],sum[pos<<|]);
}
void build(int l,int r,int pos)
{
if(l==r)
{
sum[pos]=a[ran[l]];
return;
}
int mid=(l+r)>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
pushup(pos);
}
void update(int p,int c,int l,int r,int pos)
{
if(l==r)
{
sum[pos]=c;
return;
}
int mid=(l+r)>>;
if(p<=mid)update(p,c,l,mid,pos<<);
if(p>mid) update(p,c,mid+,r,pos<<|);
pushup(pos);
}
int query(int L,int R,int l,int r,int pos)
{
if(L<=l&&r<=R)return sum[pos];
int mid=(l+r)>>;
int ans=;
if(L<=mid)ans=max(ans,query(L,R,l,mid,pos<<));
if(R>mid) ans=max(ans,query(L,R,mid+,r,pos<<|));
return ans;
}
int up(int l,int r)
{
int ans=;
while(top[l]!=top[r])
{
if(dep[top[l]]<dep[top[r]])swap(l,r);
ans=max(ans,query(tid[top[l]],tid[l],,n,));
l=fa[top[l]];
}
if(dep[l]==dep[r])return ans;
if(dep[l]<dep[r])swap(l,r);
//cout<<tid[r]<<" "<<tid[l]<<" "<<endl;
ans=max(ans,query(tid[son[r]],tid[l],,n,));
return ans;
}
char s[];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
init();
for(int i=;i<n;i++)
{
scanf("%d%d%d",&u[i],&v[i],&w[i]);
add(u[i],v[i]);
add(v[i],u[i]);
}
dfs1(,-,);
dfs2(,);
for(int i=;i<n;i++)
{
if(fa[u[i]]==v[i])a[u[i]]=w[i];
else a[v[i]]=w[i];
}
build(,n,);
while()
{
scanf("%s",s);
if(s[]=='D')break;
int a,b;
scanf("%d%d",&a,&b);
if(s[]=='C')
{
if(fa[u[a]]==v[a])update(tid[u[a]],b,,n,);
else update(tid[v[a]],b,,n,);
}
else
{
printf("%d\n",up(a,b));
}
}
}
return ;
}
SPOJ QTREE Query on a tree 树链剖分+线段树的更多相关文章
- Spoj Query on a tree SPOJ - QTREE(树链剖分+线段树)
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...
- 【POJ3237】Tree(树链剖分+线段树)
Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...
- Aizu 2450 Do use segment tree 树链剖分+线段树
Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...
- POJ3237 Tree 树链剖分 线段树
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...
- 【CF725G】Messages on a Tree 树链剖分+线段树
[CF725G]Messages on a Tree 题意:给你一棵n+1个节点的树,0号节点是树根,在编号为1到n的节点上各有一只跳蚤,0号节点是跳蚤国王.现在一些跳蚤要给跳蚤国王发信息.具体的信息 ...
- Water Tree CodeForces 343D 树链剖分+线段树
Water Tree CodeForces 343D 树链剖分+线段树 题意 给定一棵n个n-1条边的树,起初所有节点权值为0. 然后m个操作, 1 x:把x为根的子树的点的权值修改为1: 2 x:把 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- POJ3237 (树链剖分+线段树)
Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...
- BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )
BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...
- Aragorn's Story 树链剖分+线段树 && 树链剖分+树状数组
Aragorn's Story 来源:http://www.fjutacm.com/Problem.jsp?pid=2710来源:http://acm.hdu.edu.cn/showproblem.p ...
随机推荐
- Array和ArrayList不同
Employee[] array = new Employee[10]; ArrayList<Employee> staff = new ArrayList<>(); 不同 A ...
- 实例,C# 导出.dbf格式文件
using System; using System.Collections using System.Configuration; using System.Data; using System. ...
- serving inference
1.确定要提供服务的inference的input,output,以及exporter的signature:(这里用classify的signature做例子,input为byte数组,output为 ...
- sass中的循环判断条件语句
@if $lte7:true !default;//是否兼容ie6,7 //inline-block //ie6-7 *display: inline;*zoom:1; @mixin inline-b ...
- jmeter压力测试及抓包
如何使用jmeter进行分布式压力测试? 1.其他的压力机启动jmeter-server 2.在主控机jmeter的配置文件jmeter.properties里面找到,remote_hosts=xx, ...
- 目标检测论文阅读:Deformable Convolutional Networks
https://blog.csdn.net/qq_21949357/article/details/80538255 这篇论文其实读起来还是比较难懂的,主要是细节部分很需要推敲,尤其是deformab ...
- 海瑞菌的web前端学习直播间
这是本人的web前端学习直播间 一般每天晚上10点--12点为直播时间...以web前端开发为主. 若设备无法打开,请点击链接进入:https://www.huya.com/14958154 setT ...
- mycat实现mysql数据库的垂直切分
在我们的工作中可能会遇到数据库的io瓶颈. 这个时候我们应该怎么办呢? 解决办法有很多,我们可以想到的为:数据库集群,主从复制,读写分离,数据库负载均衡,数据库的分库,分表.接下来我们写一下,数据库的 ...
- python简说(二十二)写日志
分四个级别 import nnloglog = nnlog.Logger('book_server.log') log.debug('xxx值是什么')log.info('调用了什么xxx')log. ...
- Bitbucket备份恢复
我们需要备份什么? home directory:contains repository data, log files, plugins, and so on. database:contains ...