hdu 3208 Integer’s Power 筛法
Integer’s Power
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
For example, 9=3^2, 64=2^6, 1000=10^3 …
For a given positive integer y, if we can find a largest integer k and a smallest positive integer x, such that x^k=y, then the power of y is regarded as k.
It is very easy to find the power of an integer. For example:
The power of 9 is 2.
The power of 64 is 6.
The power of 1000 is 3.
The power of 99 is 1.
The power of 1 does not exist.
But YY wants to calculate the sum of the power of the integers from a to b. It seems not easy. Can you help him?
For each test case, there is one line containing two integers a and b. (2<=a<=b<=10^18)
End of input is indicated by a line containing two zeros.
248832 248832
0 0
5
思路:卡精度;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define eps 1e-8
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e4+,M=1e6+,inf=1e9+;
const LL INF=1e18+,mod=1e9+; LL big[]={,,,,};
const LL T=(LL)<<; LL multi(LL a,LL b)
{
LL ans=;
while(b)
{
if(b&)
{
double judge=1.0*INF/ans;
if(a>judge) return -;
ans*=a;
}
b>>=;
if(a>T&&b>) return -;
a=a*a;
}
return ans;
} LL findd(LL x,LL k)
{
LL r=(LL)pow(x,1.0/k);
LL t,p;
p=multi(r,k);
if(p==x) return r;
if(p>x||p==-) r--;
else
{
t=multi(r+,k);
if(t!=-&&t<=x) r++;
}
return r;
}
LL dp[];
LL xjhz(LL x)
{
memset(dp,,sizeof(dp));
dp[]=x-;
for(int i=;i<=;i++)
{
int s=,e=big[i],ans=-;
while(s<=e)
{
int mid=(s+e)>>;
if(multi(mid,i)<=x)
{
ans=mid;
s=mid+;
}
else e=mid-;
}
if(ans!=-)dp[i]=ans-;
}
for(int i=;i<=;i++)
{
dp[i]=findd(x,i)-;
}
for(int i=;i>=;i--)
{
for(int j=i+i;j<=;j+=i)
dp[i]-=dp[j];
}
LL out=;
for(int i=;i<=;i++)
out+=1LL*i*dp[i];
return out;
}
int main()
{
LL l,r;
while(~scanf("%lld%lld",&l,&r))
{
if(l==&&r==)break;
printf("%lld\n",xjhz(r)-xjhz(l-));
}
return ;
}
Integer’s Power
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2291 Accepted Submission(s): 516
For example, 9=3^2, 64=2^6, 1000=10^3 …
For a given positive integer y, if we can find a largest integer k and a smallest positive integer x, such that x^k=y, then the power of y is regarded as k.
It is very easy to find the power of an integer. For example:
The power of 9 is 2.
The power of 64 is 6.
The power of 1000 is 3.
The power of 99 is 1.
The power of 1 does not exist.
But YY wants to calculate the sum of the power of the integers from a to b. It seems not easy. Can you help him?
For each test case, there is one line containing two integers a and b. (2<=a<=b<=10^18)
End of input is indicated by a line containing two zeros.
248832 248832
0 0
5
hdu 3208 Integer’s Power 筛法的更多相关文章
- HDU 3208 Integer’s Power
Integer’s Power Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Origina ...
- 【HDOJ】3208 Integer’s Power
1. 题目描述定义如下函数$f(x)$:对于任意整数$y$,找到满足$x^k = y$同时$x$最小并的$k$值.所求为区间$[a, b]$的数代入$f$的累加和,即\[\sum_{x=a}^{b} ...
- Integer’s Power HDU - 3208(容斥原理)
找出(l,r)内的所有的指数最大的次方和 因为一个数可能可以看成a^b和c^d,所以我需要去重,从后往前枚举幂数,然后找可以整除的部分,把低次幂的数去掉. 然后开n方的部分,先用pow()函数找到最接 ...
- HDU Integer's Power(容斥原理)
题意 求[l,r]的最大指数和(1<=l,r<=10^18) 最大指数和(如64=8^2=4^3=2^6,所以64的最大指数和是6) 题解 很明显我们可以先求出[1,n]的最大指数和,然后 ...
- hdu 1047 Integer Inquiry
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1047 Integer Inquiry Description One of the first use ...
- hdu 6034 B - Balala Power! 贪心
B - Balala Power! 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6034 题面描述 Talented Mr.Tang has n st ...
- HDU 4461:The Power of Xiangqi(水题)
http://acm.hdu.edu.cn/showproblem.php?pid=4461 题意:每个棋子有一个权值,给出红方的棋子情况,黑方的棋子情况,问谁能赢. 思路:注意“ if a play ...
- hdu acm-1047 Integer Inquiry(大数相加)
Integer Inquiry Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- HDU 4658 Integer Partition(整数拆分)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4658 题意:给出n.k.求n的拆分方案数.要求拆分中每个数不超过k. i64 f[N]; void i ...
随机推荐
- DOM jquery
DOM 文档对象模型(Document Object Model)是一种用于HTML和XML文档的编程接口.它给文档提供了一种结构化的表示方法,可以改变文档的内容和呈现方式.我们最为关心的是,DOM ...
- How to use Nissan consult 3 plus to check, make key and program?
How to use Nissan consult 3 plus to test Nissan? Firstly: get one particular Nissan consult 3 plus. ...
- socket.io不为人知的功能
socket.io 是一个基于websocket实现的前后端实时通讯框架,也对低版本浏览器做了封装.使用起来简单,方便. 初次使用起来可能会比较迷糊,其实主要常用就几个方法,简单介绍一下. //客户端 ...
- Python+OpenCV图像处理(八)—— 图像直方图
直方图简介:图像的直方图是用来表现图像中亮度分布的直方图,给出的是图像中某个亮度或者某个范围亮度下共有几个像素.还不明白?就是统计一幅图某个亮度像素数量.比如对于灰度值12,一幅图里面有2000 个像 ...
- oj练习---dp专题
1.POJ 3744 Scout YYF I 经典的dp模型,但是要用到快速矩阵幂加速,分段的思想 # include <stdio.h> # include <algorithm& ...
- 11: python中的轻量级定时任务调度库:schedule
1.1 schedule 基本使用 1.schedule 介绍 1. 提到定时任务调度的时候,相信很多人会想到芹菜celery,要么就写个脚本塞到crontab中. 2. 不过,一个小的定时脚本,要用 ...
- Java1.7 HashMap 实现原理和源码分析
HashMap 源码分析是面试中常考的一项,下面一篇文章讲得很好,特地转载过来. 本文转自:https://www.cnblogs.com/chengxiao/p/6059914.html 参考博客: ...
- topcoder srm 505 div1
problem1 link 设行数为$n$列数为$m$ 对于任意的两行$r_{1},r_{2}$以及任意的两列$c_{1},c_{2}$所确定的四个格子,只要知道其中的三个就能确定第四个,且必须要三个 ...
- com.fasterxml.jackson.databind.JsonMappingException
背景 在搭建SSM整合activiti项目时,在查找activiti定义的流程模板时,前台不能够接受到ProcessDefinition这个对象. 原因 ProcessDefinition是一个接口, ...
- ODAC(V9.5.15) 学习笔记(十三)TOraMetaData
通过TOraMetaData控件获取Oracle数据库对象信息,首先需要设置MetaDataKind属性,然后设置Restrictions属性设置条件,最后通过激活数据集获取信息,演示代码如下: Me ...