Integer’s Power

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description
LMY and YY are number theory lovers. They like to find and solve some interesting number theory problems together. One day, they become interested in some special numbers, which can be expressed as powers of smaller numbers.

For example, 9=3^2, 64=2^6, 1000=10^3 …

For a given positive integer y, if we can find a largest integer k and a smallest positive integer x, such that x^k=y, then the power of y is regarded as k.
It is very easy to find the power of an integer. For example:

The power of 9 is 2.
The power of 64 is 6.
The power of 1000 is 3.
The power of 99 is 1.
The power of 1 does not exist.

But YY wants to calculate the sum of the power of the integers from a to b. It seems not easy. Can you help him?

 
Input
The input consists of multiple test cases.
For each test case, there is one line containing two integers a and b. (2<=a<=b<=10^18)

End of input is indicated by a line containing two zeros.

 
Output
For each test case, output the sum of the power of the integers from a to b.
 
Sample Input
2 10
248832 248832
0 0
 
Sample Output
13
5
 
Source

思路:卡精度;

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define eps 1e-8
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e4+,M=1e6+,inf=1e9+;
const LL INF=1e18+,mod=1e9+; LL big[]={,,,,};
const LL T=(LL)<<; LL multi(LL a,LL b)
{
LL ans=;
while(b)
{
if(b&)
{
double judge=1.0*INF/ans;
if(a>judge) return -;
ans*=a;
}
b>>=;
if(a>T&&b>) return -;
a=a*a;
}
return ans;
} LL findd(LL x,LL k)
{
LL r=(LL)pow(x,1.0/k);
LL t,p;
p=multi(r,k);
if(p==x) return r;
if(p>x||p==-) r--;
else
{
t=multi(r+,k);
if(t!=-&&t<=x) r++;
}
return r;
}
LL dp[];
LL xjhz(LL x)
{
memset(dp,,sizeof(dp));
dp[]=x-;
for(int i=;i<=;i++)
{
int s=,e=big[i],ans=-;
while(s<=e)
{
int mid=(s+e)>>;
if(multi(mid,i)<=x)
{
ans=mid;
s=mid+;
}
else e=mid-;
}
if(ans!=-)dp[i]=ans-;
}
for(int i=;i<=;i++)
{
dp[i]=findd(x,i)-;
}
for(int i=;i>=;i--)
{
for(int j=i+i;j<=;j+=i)
dp[i]-=dp[j];
}
LL out=;
for(int i=;i<=;i++)
out+=1LL*i*dp[i];
return out;
}
int main()
{
LL l,r;
while(~scanf("%lld%lld",&l,&r))
{
if(l==&&r==)break;
printf("%lld\n",xjhz(r)-xjhz(l-));
}
return ;
}

Integer’s Power

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2291    Accepted Submission(s): 516

Problem Description
LMY and YY are number theory lovers. They like to find and solve some interesting number theory problems together. One day, they become interested in some special numbers, which can be expressed as powers of smaller numbers.

For example, 9=3^2, 64=2^6, 1000=10^3 …

For a given positive integer y, if we can find a largest integer k and a smallest positive integer x, such that x^k=y, then the power of y is regarded as k.
It is very easy to find the power of an integer. For example:

The power of 9 is 2.
The power of 64 is 6.
The power of 1000 is 3.
The power of 99 is 1.
The power of 1 does not exist.

But YY wants to calculate the sum of the power of the integers from a to b. It seems not easy. Can you help him?

 
Input
The input consists of multiple test cases.
For each test case, there is one line containing two integers a and b. (2<=a<=b<=10^18)

End of input is indicated by a line containing two zeros.

 
Output
For each test case, output the sum of the power of the integers from a to b.
 
Sample Input
2 10
248832 248832
0 0
 
Sample Output
13
5
 
Source

hdu 3208 Integer’s Power 筛法的更多相关文章

  1. HDU 3208 Integer’s Power

    Integer’s Power Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Origina ...

  2. 【HDOJ】3208 Integer’s Power

    1. 题目描述定义如下函数$f(x)$:对于任意整数$y$,找到满足$x^k = y$同时$x$最小并的$k$值.所求为区间$[a, b]$的数代入$f$的累加和,即\[\sum_{x=a}^{b} ...

  3. Integer’s Power HDU - 3208(容斥原理)

    找出(l,r)内的所有的指数最大的次方和 因为一个数可能可以看成a^b和c^d,所以我需要去重,从后往前枚举幂数,然后找可以整除的部分,把低次幂的数去掉. 然后开n方的部分,先用pow()函数找到最接 ...

  4. HDU Integer's Power(容斥原理)

    题意 求[l,r]的最大指数和(1<=l,r<=10^18) 最大指数和(如64=8^2=4^3=2^6,所以64的最大指数和是6) 题解 很明显我们可以先求出[1,n]的最大指数和,然后 ...

  5. hdu 1047 Integer Inquiry

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1047 Integer Inquiry Description One of the first use ...

  6. hdu 6034 B - Balala Power! 贪心

    B - Balala Power! 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6034 题面描述 Talented Mr.Tang has n st ...

  7. HDU 4461:The Power of Xiangqi(水题)

    http://acm.hdu.edu.cn/showproblem.php?pid=4461 题意:每个棋子有一个权值,给出红方的棋子情况,黑方的棋子情况,问谁能赢. 思路:注意“ if a play ...

  8. hdu acm-1047 Integer Inquiry(大数相加)

    Integer Inquiry Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  9. HDU 4658 Integer Partition(整数拆分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4658 题意:给出n.k.求n的拆分方案数.要求拆分中每个数不超过k. i64 f[N]; void i ...

随机推荐

  1. ul点击li,增加样式

    用户首次绑定后,需要选择一款头像 <!--imgList头像列表--><el-row class="regModel1"> <el-col :span ...

  2. checkbox 全选效果

    html部分 <p id="all">全选</p> <input type="checkbox" /><br/> ...

  3. node.js的on、emit、off封装

    //绑定事件.触发事件和移除事件 //绑定事件 //on(eventName,cb){} //第一步判断当前事件是否存在,如果不存在则初始化:key:[],然后在将回调函数添加到数据中去 let ev ...

  4. java日志

    http://blog.csdn.net/u013628152/article/details/43538299 http://blog.csdn.net/isea533/article/detail ...

  5. Spring框架之使用JdbcTemplate开发Dao层程序

    简介: JdbcTemplate开发dao层程序     由Spring框架给我们提供,Spring提供的很多操作数据源(关系型数据库,二维表格模型,有明确的行和列(mysql/orcal等) 非关系 ...

  6. twiested 及其他轮子

    https://www.lfd.uci.edu/~gohlke/pythonlibs/

  7. php 查找字符串里面中文字符第一次出现的位置,并插入字符串

    //查找字符串里面中文字符第一次出现的位置,并插入字符串 function find_first_chinese_insert($str,$insert_str){ $count = mb_strle ...

  8. python类的组合

    类的组合,即在类实例化时,将另一个类的实例作为参数传入,这样可以将两个实例关联起来. 当类之间有显著不同,并且较小的类是较大的类所需要的组件时,用组合比较好. 例如,描述一个机器人类,这个大类是由很多 ...

  9. 实现定时器定时 1 秒钟,LED 亮灭显示

    实现定时器定时 1 秒钟,LED 亮灭显示 要求 每隔一秒钟,实现LED灯的显隐转换 实验代码 /*************************************************** ...

  10. AnswerOpenCV(1001-1007)一周佳作欣赏

    外国不过十一,所以利用十一假期,看看他们都在干什么. 一.小白问题 http://answers.opencv.org/question/199987/contour-single-blob-with ...