K进制

Description

给定一个正整数n,请你判断在哪些进制下n的表示恰好有2位是1,其余位都是0。

Input

输入第一行为整数TT,表示有TT组数据(1 \le T \le 50)(1≤T≤50)

每组数据包含一个整数n(3 \le n \le 1000000000)n(3≤n≤1000000000)

输入保证一定有解

Output

对于每组数据,从小到大输出每一个符合要求的进制,每个一行

Sample Input 1

1
10

Sample Output 1

2
3
9
看着题解做的。
恰好有2位是1,其余位都是0。 所以 n = pow(k,a) + pow (k,b) 且 a != b;
实现的时候容易超时,最开始用的三重循环,稳稳地超时。
然后修改了一下 用 temp = pow(k,b) = n - pow(k,a),然后用while循环计算出b的值。 还是超时
处理 j = k,a = 1, 每次j*=k,a++; j < n 的时候继续循环。
#include <bits/stdc++.h>
#define ll long long
using namespace std; int main(){
int t;
cin>>t;
while(t--){
ll n;
cin>>n;
for(ll k = 2; k*k <= n; k++)
for(ll a = 1,j = k; j < n; a++, j =j*k){
ll b = 0;
ll temp = n - j;
while(temp%k==0) {
temp/=k;b++;
}
if(temp == 1 && a != b){
cout<<k<<endl;break;
}
} cout<<n-1<<endl; }
return 0;
}

Ecust DIV3 k进制 【暴力不断优化】的更多相关文章

  1. 快速沃尔什变换(FWT)及K进制异或卷积&快速子集变换(FST)讲解

    前言: $FWT$是用来处理位运算(异或.与.或)卷积的一种变换.位运算卷积是什么?形如$f[i]=\sum\limits_{j\oplus k==i}^{ }g[j]*h[k]$的卷积形式(其中$\ ...

  2. bzoj 3000 Big Number 估算n!在k进制下的位数 斯特林公式

    题目大意 求n!在k进制下的位数 2≤N≤2^31, 2≤K≤200 分析 作为数学没学好的傻嗨,我们先回顾一下log函数 \(\log_a(b)=\frac 1 {log_b(a)}\) \(\lo ...

  3. [Luogu P1066] 2^k进制数 (组合数或DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P1066 Solution 这是一道神奇的题目,我们有两种方法来处理这个问题,一种是DP,一种是组合数. 这 ...

  4. CF459C Pashmak and Buses (构造d位k进制数

    C - Pashmak and Buses Codeforces Round #261 (Div. 2) C. Pashmak and Buses time limit per test 1 seco ...

  5. P1066 2^k进制数

    传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...

  6. 洛谷 P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  7. 洛谷P1066 2^k进制数(题解)(递推版)

    https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...

  8. K进制数

    题目描述 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 例: 1010 ...

  9. 【洛谷p1066】2^k进制数

    (不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include< ...

随机推荐

  1. 免费SSL证书Let's Encrypt(certbot)安装使用教程

    免费SSL证书Let's Encrypt(certbot)安装使用教程 https://www.vpser.net/build/letsencrypt-certbot.html

  2. [knowledge] netmap

    900MHz的单核处理10GB的包收/发. netmap has been implemented in FreeBSD and Linux and Gbit/s network adapters. ...

  3. mysql学习【第4篇】:MySQL函数和编程

    狂神声明 : 文章均为自己的学习笔记 , 转载一定注明出处 ; 编辑不易 , 防君子不防小人~共勉 ! mysql学习[第4篇]:MySQL函数 官方文档 : 官方文档 常用函数 分类: 数学函数 , ...

  4. DBCHART

    dbchart1.Series[0].DataSource := adoquery1; dbchart1.Series[0].XLabelsSource := 'aaaa'; dbchart1.Ser ...

  5. LeetCode 500 Keyboard Row 解题报告

    题目要求 Given a List of words, return the words that can be typed using letters of alphabet on only one ...

  6. json 脚本入库的几种方法

    json 脚本入库的几种方法,见代码: #-*- encoding: utf-8 -*- #第一种mongodb入库 # from pymongo import * # import json # c ...

  7. 洛谷P5234 越狱老虎桥 [JSOI2012] tarjan

    正解:tarjan+贪心(?并不会总结是什么方法QAQ,,, 解题报告: 传送门! 这题是真的题意杀,,,我我我要不是之前知道题目大意了我怕是怎么看都看不懂这是个什么意思昂QAQ 所以先说下题目大意好 ...

  8. 【JMeter】【接口测试】csv参数化,数据驱动,自动化测试

    csv参数化,数据驱动   首先我们要有一个接口测试用例存放的地方,我们这里用EXCEL模板管理,里面包含用例编号.入参.优先级.请求方式.url等等. 1:新建一个txt文件,命名为sjqd,后缀名 ...

  9. 一行js弹窗代码就能设计漂亮的弹窗广告

    接到一个设计需求,要求xmyanke在网站右侧挂一个弹窗广告宣传最近的活动,找了半天都没看到合适的,自己鼓捣了一行js弹窗代码就能设计漂亮的弹窗广告,来瞧一下,欢迎拍砖提意见,js弹窗广告代码如下: ...

  10. centos下搭建sockets5代理

    #安装依赖及ss5 yum -y install gcc openldap-devel pam-devel openssl-devel wget https://nchc.dl.sourceforge ...