sys模块

sys模块是与python解释器交互的一个接口

sys.argv           命令行参数List,第一个元素是程序本身路径
sys.exit(n) 退出程序,正常退出时exit(0),错误退出sys.exit(1)
sys.version 获取Python解释程序的版本信息
sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform 返回操作系统平台名称
import sys
try:
sys.exit(1)
except SystemExit as e:
print(e)

异常处理和status

 

序列化模块

什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化

比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
BUT!强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)

为什么要有序列化模块

序列化的目的

1、以某种存储形式使自定义对象持久化
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性。

json

Json模块提供了四个功能:dumps、dump、loads、load

import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic) #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic) #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的 dic2 = json.loads(str_dic) #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2) #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'} list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]

loads和dumps

import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close() f = open('json_file')
dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2)

load和dump

import json
f = open('file','w')
json.dump({'国籍':'中国'},f)
ret = json.dumps({'国籍':'中国'})
f.write(ret+'\n')
json.dump({'国籍':'美国'},f,ensure_ascii=False)
ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
f.write(ret+'\n')
f.close()

ensure_ascii关键字参数

Serialize obj to a JSON formatted str.(字符串表示的json对象)
Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key
ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。)
If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse).
If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity).
indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json
separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。
default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError.
sort_keys:将数据根据keys的值进行排序。
To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.

其他参数说明

import json
data = {'username':['李华','二愣子'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False)
print(json_dic2)

json的格式化输出

pickle

json & pickle 模块

用于序列化的两个模块

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load  (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化

import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic) #一串二进制内容 dic2 = pickle.loads(str_dic)
print(dic2) #字典 import time
struct_time = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close() f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year)

pickle

这时候机智的你又要说了,既然pickle如此强大,为什么还要学json呢?
这里我们要说明一下,json是一种所有的语言都可以识别的数据结构。
如果我们将一个字典或者序列化成了一个json存在文件里,那么java代码或者js代码也可以拿来用。
但是如果我们用pickle进行序列化,其他语言就不能读懂这是什么了~
所以,如果你序列化的内容是列表或者字典,我们非常推荐你使用json模块
但如果出于某种原因你不得不序列化其他的数据类型,而未来你还会用python对这个数据进行反序列化的话,那么就可以使用pickle

shelve

shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。
shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。

import shelve
f = shelve.open('shelve_file')
f['key'] = {'int':10, 'float':9.5, 'string':'Sample data'} #直接对文件句柄操作,就可以存入数据
f.close() import shelve
f1 = shelve.open('shelve_file')
existing = f1['key'] #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错
f1.close()
print(existing)

shelve

这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB

import shelve
f = shelve.open('shelve_file', flag='r')
existing = f['key']
f.close()
print(existing)

shelve只读

由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。

import shelve
f1 = shelve.open('shelve_file')
print(f1['key'])
f1['key']['new_value'] = 'this was not here before'
f1.close() f2 = shelve.open('shelve_file', writeback=True)
print(f2['key'])
f2['key']['new_value'] = 'this was not here before'
f2.close()

设置writeback

writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。

序列化模块和sys模块的更多相关文章

  1. (转)python常用模块(模块和包的解释,time模块,sys模块,random模块,os模块,json和pickle序列化模块)

    阅读目录 1.1.1导入模块 1.1.2__name__ 1.1模块 什么是模块: 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代 ...

  2. 时间模块之datatime模块、os模块、sys模块、json模块、json模块实操

    目录 一.模块的绝对导入和相对导入 二.包的概念 三.编程思想的转变 四.软件开发目录规范 五.常见的内置模块 一.时间模块之datatime模块 1.datetime.datetime.today( ...

  3. python常用模块之sys模块

    python常用模块之sys模块 1.sys.argv[]:命令行参数List,第一个元素是程序本身 # 写一个简单的python程序,代码如下: #!/usr/bin/python #coding= ...

  4. python常用模块(模块和包的解释,time模块,sys模块,random模块,os模块,json和pickle序列化模块)

    1.1模块 什么是模块: 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文 ...

  5. 模块—— 序列化模块、random模块、os模块 、 sys模块、hashlib模块、collections模块

    今天我们来说说Python中的模块: 第三方模块 可以下载/安装/使用 第一步:将pip.exe 所在的目录添加到环境变量中第二步:输入pip第三步:pip install 要安装的模块名称  #pi ...

  6. Python基础(12)_python模块之sys模块、logging模块、序列化json模块、pickle模块、shelve模块

    5.sys模块 sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0) sys.version 获取Python解释程序的版本信息 ...

  7. python学习Day27--time模块、sys模块、os模块和序列化模块

    [知识点] 1.时间模块: (1)时间戳时间,格林威治时间,float数据类型 英国伦敦的时间:1970.1.1     0:0:0 北京时间:1970.1.1     8:0:0 (2)结构化时间, ...

  8. collections模块、时间模块、random模块、os模块、sys模块、序列化模块、subprocess模块

    一.collections模块 1.其他数据类型 在内置数据类型(str.dict.list.tuple.set)的基础上,collections模块还提供了了几个额外的数据类型:Counter.de ...

  9. logging模块、sys模块、shelve模块

    一.logging模块 1.logging模块就是用于记录日志的,日志就是记录某个时间点,发生的事情. 2.记录日志是为了日后来复查,提取有用的信息. 3.如何去记录日志:可以直接打开文件,记录信息, ...

随机推荐

  1. Visio画流程图风格设置

    第一步:选取设计下选用“简单” 第二步:设置颜色为“铅笔” 第三步:设置效果为“辐射” 第四步:效果

  2. 微信支付WxpayAPI_php_v3 错误修改

    微信sdk:WxpayAPI_php_v3 这是下载压缩包的目录结构. https://pay.weixin.qq.com/wiki/doc/api/jsapi.php?chapter=11_1 ce ...

  3. ASP.NET CORE 之 在IIS上部署MVC项目

    与ASP.NET时代不同,ASP.NET Core不再是由IIS工作进程(w3wp.exe)托管,而是使用自托管Web服务器(Kestrel)运行,IIS则是作为反向代理的角色转发请求到Kestrel ...

  4. 微软BI 之SSAS 系列 - 维度的优化,灌木丛属性关系,以及自然层次结构与非自然层次结构的概念

    维度的优化 在 SSAS 开发设计过程中,维度的优化非常重要,因为它在 SSAS 分析服务性能调优的过程中往往能起到一个非常重要的作用. 一般来说,对于 Cube 的性能优化第一步可能考虑的就是查看维 ...

  5. 在SpringBoot中使用热部署(DevTools)

    一.简介 有时候我们开发完SpringBoot项目后,启动运行.但是经常发现代码需要反复修改,然后修改部分内容后需要再启动....这样太费时了,热部署就是用来解决这一问题.让你修改完代码后,能自动执行 ...

  6. 添加JavaDoc

    使用javadoc比较容易生成文档,命令如下: javadoc -d doc -sourcepath src/main/java/ -subpackages com -encoding UTF-8 - ...

  7. 网站菜单CSS

    #site-nav .down-menu a{height:88px;line-height:88px;border-bottom:0px solid #9e5ae2;transition-durat ...

  8. 11G新特性 -- 分区表和增量统计信息

    对于分区表,优化器会在全局级别为整个表维护一份统计信息,也会在分区级别为分区表维护一份统计信息. 对于大多数分区,dml一般都是在最近的分区上执行.在11g中,数据库支持只对那些发生一定数据变化的分区 ...

  9. Socket网络编程--聊天程序(6)

    这一小节将增加一个用户的结构体,用于保存用户的用户名和密码,然后发给服务器,然后在服务器进行判断验证.这里就有一个问题,以前讲的就是发送字符串是使用char类型进行传输,然后在服务器进行用同样是字符串 ...

  10. pycharm启动慢 –xms -xmx相关参数设置

    Eclipse崩溃,错误提示:MyEclipse has detected that less than 5% of the 64MB of Perm Gen (Non-heap memory) sp ...