序列化模块和sys模块
sys模块
sys模块是与python解释器交互的一个接口
sys.argv 命令行参数List,第一个元素是程序本身路径
sys.exit(n) 退出程序,正常退出时exit(0),错误退出sys.exit(1)
sys.version 获取Python解释程序的版本信息
sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform 返回操作系统平台名称
import sys
try:
sys.exit(1)
except SystemExit as e:
print(e)
异常处理和status
序列化模块
什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化。
比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
BUT!强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)
为什么要有序列化模块
序列化的目的

json
Json模块提供了四个功能:dumps、dump、loads、load
import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic) #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic) #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的 dic2 = json.loads(str_dic) #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2) #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'} list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]
loads和dumps
import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close() f = open('json_file')
dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2)
load和dump
import json
f = open('file','w')
json.dump({'国籍':'中国'},f)
ret = json.dumps({'国籍':'中国'})
f.write(ret+'\n')
json.dump({'国籍':'美国'},f,ensure_ascii=False)
ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
f.write(ret+'\n')
f.close()
ensure_ascii关键字参数
Serialize obj to a JSON formatted str.(字符串表示的json对象)
Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key
ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。)
If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse).
If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity).
indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json
separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。
default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError.
sort_keys:将数据根据keys的值进行排序。
To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.
其他参数说明
import json
data = {'username':['李华','二愣子'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False)
print(json_dic2)
json的格式化输出
pickle
json & pickle 模块
用于序列化的两个模块
- json,用于字符串 和 python数据类型间进行转换
- pickle,用于python特有的类型 和 python的数据类型间进行转换
pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化)
import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic) #一串二进制内容 dic2 = pickle.loads(str_dic)
print(dic2) #字典 import time
struct_time = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close() f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year)
pickle
这时候机智的你又要说了,既然pickle如此强大,为什么还要学json呢?
这里我们要说明一下,json是一种所有的语言都可以识别的数据结构。
如果我们将一个字典或者序列化成了一个json存在文件里,那么java代码或者js代码也可以拿来用。
但是如果我们用pickle进行序列化,其他语言就不能读懂这是什么了~
所以,如果你序列化的内容是列表或者字典,我们非常推荐你使用json模块
但如果出于某种原因你不得不序列化其他的数据类型,而未来你还会用python对这个数据进行反序列化的话,那么就可以使用pickle
shelve
shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。
shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。
import shelve
f = shelve.open('shelve_file')
f['key'] = {'int':10, 'float':9.5, 'string':'Sample data'} #直接对文件句柄操作,就可以存入数据
f.close() import shelve
f1 = shelve.open('shelve_file')
existing = f1['key'] #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错
f1.close()
print(existing)
shelve
这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB
import shelve
f = shelve.open('shelve_file', flag='r')
existing = f['key']
f.close()
print(existing)
shelve只读
由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。
import shelve
f1 = shelve.open('shelve_file')
print(f1['key'])
f1['key']['new_value'] = 'this was not here before'
f1.close() f2 = shelve.open('shelve_file', writeback=True)
print(f2['key'])
f2['key']['new_value'] = 'this was not here before'
f2.close()
设置writeback
writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。
序列化模块和sys模块的更多相关文章
- (转)python常用模块(模块和包的解释,time模块,sys模块,random模块,os模块,json和pickle序列化模块)
阅读目录 1.1.1导入模块 1.1.2__name__ 1.1模块 什么是模块: 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代 ...
- 时间模块之datatime模块、os模块、sys模块、json模块、json模块实操
目录 一.模块的绝对导入和相对导入 二.包的概念 三.编程思想的转变 四.软件开发目录规范 五.常见的内置模块 一.时间模块之datatime模块 1.datetime.datetime.today( ...
- python常用模块之sys模块
python常用模块之sys模块 1.sys.argv[]:命令行参数List,第一个元素是程序本身 # 写一个简单的python程序,代码如下: #!/usr/bin/python #coding= ...
- python常用模块(模块和包的解释,time模块,sys模块,random模块,os模块,json和pickle序列化模块)
1.1模块 什么是模块: 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文 ...
- 模块—— 序列化模块、random模块、os模块 、 sys模块、hashlib模块、collections模块
今天我们来说说Python中的模块: 第三方模块 可以下载/安装/使用 第一步:将pip.exe 所在的目录添加到环境变量中第二步:输入pip第三步:pip install 要安装的模块名称 #pi ...
- Python基础(12)_python模块之sys模块、logging模块、序列化json模块、pickle模块、shelve模块
5.sys模块 sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0) sys.version 获取Python解释程序的版本信息 ...
- python学习Day27--time模块、sys模块、os模块和序列化模块
[知识点] 1.时间模块: (1)时间戳时间,格林威治时间,float数据类型 英国伦敦的时间:1970.1.1 0:0:0 北京时间:1970.1.1 8:0:0 (2)结构化时间, ...
- collections模块、时间模块、random模块、os模块、sys模块、序列化模块、subprocess模块
一.collections模块 1.其他数据类型 在内置数据类型(str.dict.list.tuple.set)的基础上,collections模块还提供了了几个额外的数据类型:Counter.de ...
- logging模块、sys模块、shelve模块
一.logging模块 1.logging模块就是用于记录日志的,日志就是记录某个时间点,发生的事情. 2.记录日志是为了日后来复查,提取有用的信息. 3.如何去记录日志:可以直接打开文件,记录信息, ...
随机推荐
- 微信支付WxpayAPI_php_v3 错误修改
微信sdk:WxpayAPI_php_v3 这是下载压缩包的目录结构. https://pay.weixin.qq.com/wiki/doc/api/jsapi.php?chapter=11_1 ce ...
- 调用 setState 之后发生了什么?
(1)代码中调用 setState 函数之后,React 会将传入的参数对象与组件当前的状态合并,然后触发所谓的调和过程(Reconciliation).(2)经过调和过程,React 会以相对高效的 ...
- Lintcode 730 所有子集的和
已知: 给一整数 n, 我们需要求前n个自然数形成的集合的所有可能子集中所有元素的和. 示例: 给出 n = , 返回 可能的子集为 {{}, {}, {, }}. 子集的元素和为 + + + = 给 ...
- 在 word 中对正文和目录进行分节显示页码
使用版本 word 2016 使目录独占一页:在正文第一页的第一个字符前插入分节符下一页(布局--分节符--下一页),此时会在正文第一个字符前插入分节符.在之前插入一张空白页,用于插入目录.(插入 - ...
- Android使用腾讯浏览服务X5内核
[前期准备] 腾讯X5 jar包下载地址 [点击打开] 本次完整DEMO源码 [打开Github] [集成步骤] 第一步:下载jar包添加到项目 第二步:添加权限 <uses-permissio ...
- Socket网络编程--聊天程序(8)
上一节已经完成了对用户的身份验证了,既然有了验证,那么接下来就能对不同的客户端进行区分了,所以这一节讲实现私聊功能.就是通过服务器对客户端的数据进行转发到特定的用户上, 实现私聊功能的聊天程序 实现的 ...
- 一个正整数表示为n个连续正整数之和(第1届第2题)
题目要求 问题描述:一个正整数有可能可以被表示为 n(n>=2) 个连续正整数之和,如: 15=1+2+3+4+5 15=4+5+6 15=7+8 编写程序,根据输入的任何一个正整数,找出符合这 ...
- Core dump去哪里了?
转自:http://blog.csdn.net/normallife/article/details/53818997 今天程序Crash,去追踪,找core dump,始终没有找到,后来到了/pro ...
- Gtk-WARNING**:无法在模块路径中找到主题引擎:“pixmap”的解决
Gtk-WARNING**:无法在模块路径中找到主题引擎:“pixmap”的解决 解决以上问题, 只需要安装 gnome-themes-standard 即可 如果终端中提示: (gvim:23 ...
- Java 继承中构造方法的执行顺序问题
在Java中,如果一个类没有任何显式创建的构造器则该类默认会有一个无参构造器:如果显式创建了有参构造器则该类就不再有默认无参构造器. 在Java继承中,构造器并不能被继承,而是被显示或隐式调用. 1. ...