强化学习笔记之【DDPG算法】


前言:

本文为强化学习笔记第二篇,第一篇讲的是Q-learning和DQN

就是因为DDPG引入了Actor-Critic模型,所以比DQN多了两个网络,网络名字功能变了一下,其它的就是软更新之类的小改动而已

本文初编辑于2024.10.6

CSDN主页:https://blog.csdn.net/rvdgdsva

博客园主页:https://www.cnblogs.com/hassle

博客园本文链接:

真 · 图文无关


原论文伪代码

  • 上述代码为DDPG原论文中的伪代码

需要先看:

Deep Reinforcement Learning (DRL) 算法在 PyTorch 中的实现与应用【DDPG部分】【没有在选择一个新的动作的时候,给policy函数返回的动作值增加一个噪音】【critic网络与下面不同】

深度强化学习笔记——DDPG原理及实现(pytorch)【DDPG伪代码部分】【这个跟上面的一样没有加噪音】【critic网络与上面不同】

【深度强化学习】(4) Actor-Critic 模型解析,附Pytorch完整代码【选看】【Actor-Critic理论部分】


如果需要给policy函数返回的动作值增加一个噪音,实现如下

def select_action(self, state, noise_std=0.1):
state = torch.FloatTensor(state.reshape(1, -1))
action = self.actor(state).cpu().data.numpy().flatten() # 添加噪音,上面两个文档的代码都没有这个步骤
noise = np.random.normal(0, noise_std, size=action.shape)
action = action + noise return action

DDPG 中的四个网络

注意!!!这个图只展示了Critic网络的更新,没有展示Actor网络的更新

  • Actor 网络(策略网络)

    • 作用:决定给定状态 ss 时,应该采取的动作 a=π(s)a=π(s),目标是找到最大化未来回报的策略。
    • 更新:基于 Critic 网络提供的 Q 值更新,以最大化 Critic 估计的 Q 值。
  • Target Actor 网络(目标策略网络)
    • 作用:为 Critic 网络提供更新目标,目的是让目标 Q 值的更新更为稳定。
    • 更新:使用软更新,缓慢向 Actor 网络靠近。
  • Critic 网络(Q 网络)
    • 作用:估计当前状态 ss 和动作 aa 的 Q 值,即 Q(s,a)Q(s,a),为 Actor 提供优化目标。
    • 更新:通过最小化与目标 Q 值的均方误差进行更新。
  • Target Critic 网络(目标 Q 网络)
    • 作用:生成 Q 值更新的目标,使得 Q 值更新更为稳定,减少振荡。
    • 更新:使用软更新,缓慢向 Critic 网络靠近。

大白话解释:

​ 1、DDPG实例化为actor,输入state输出action

​ 2、DDPG实例化为actor_target

​ 3、DDPG实例化为critic_target,输入next_state和actor_target(next_state)经DQN计算输出target_Q

​ 4、DDPG实例化为critic,输入state和action输出current_Q,输入state和actor(state)【这个参数需要注意,不是action】经负均值计算输出actor_loss

​ 5、current_Q 和target_Q进行critic的参数更新

​ 6、actor_loss进行actor的参数更新

action实际上是batch_action,state实际上是batch_state,而batch_action != actor(batch_state)

因为actor是频繁更新的,而采样是随机采样,不是所有batch_action都能随着actor的更新而同步更新

Critic网络的更新是一发而动全身的,相比于Actor网络的更新要复杂要重要许多


代码核心更新公式

\[target\underline{~}Q = critic\underline{~}target(next\underline{~}state, actor\underline{~}target(next\underline{~}state))
\\target\underline{~}Q = reward + (1 - done) \times gamma \times target\underline{~}Q.detach()
\]
  • 上述代码与伪代码对应,意为计算预测Q值
\[critic\underline{~}loss = MSELoss(critic(state, action), target\underline{~}Q)
\\critic\underline{~}optimizer.zero\underline{~}grad()
\\critic\underline{~}loss.backward()
\\critic\underline{~}optimizer.step()
\]
  • 上述代码与伪代码对应,意为使用均方误差损失函数更新Critic
\[actor\underline{~}loss = -critic(state,actor(state)).mean()
\\actor\underline{~}optimizer.zero\underline{~}grad()
\\ actor\underline{~}loss.backward()
\\ actor\underline{~}optimizer.step()
\]
  • 上述代码与伪代码对应,意为使用确定性策略梯度更新Actor
\[critic\underline{~}target.parameters().data=(tau \times critic.parameters().data + (1 - tau) \times critic\underline{~}target.parameters().data)
\\
actor\underline{~}target.parameters().data=(tau \times actor.parameters().data + (1 - tau) \times actor\underline{~}target.parameters().data)
\]
  • 上述代码与伪代码对应,意为使用策略梯度更新目标网络

Actor和Critic的角色

  • Actor:负责选择动作。它根据当前的状态输出一个确定性动作。
  • Critic:评估Actor的动作。它通过计算状态-动作值函数(Q值)来评估给定状态和动作的价值。

更新逻辑

  • Critic的更新

    1. 使用经验回放缓冲区(Experience Replay)从中采样一批经验(状态、动作、奖励、下一个状态)。
    2. 计算目标Q值:使用目标网络(critic_target)来估计下一个状态的Q值(target_Q),并结合当前的奖励。
    3. 使用均方误差损失函数(MSELoss)来更新Critic的参数,使得预测的Q值(target_Q)与当前Q值(current_Q)尽量接近。
  • Actor的更新
    1. 根据当前的状态(state)从Critic得到Q值的梯度(即对Q值相对于动作的偏导数)。
    2. 使用确定性策略梯度(DPG)的方法来更新Actor的参数,目标是最大化Critic评估的Q值。

个人理解:

DQN算法是将q_network中的参数每n轮一次复制到target_network里面

DDPG使用系数\(\tau\)来更新参数,将学习到的参数更加soft地拷贝给目标网络

DDPG采用了actor-critic网络,所以比DQN多了两个网络

强化学习算法笔记之【DDPG算法】的更多相关文章

  1. 强化学习读书笔记 - 02 - 多臂老O虎O机问题

    # 强化学习读书笔记 - 02 - 多臂老O虎O机问题 学习笔记: [Reinforcement Learning: An Introduction, Richard S. Sutton and An ...

  2. 强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods)

    强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S ...

  3. 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)

    强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...

  4. 强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods)

    强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods) 学习笔记: Reinforcement Learning: An Introduction, Richa ...

  5. 强化学习读书笔记 - 12 - 资格痕迹(Eligibility Traces)

    强化学习读书笔记 - 12 - 资格痕迹(Eligibility Traces) 学习笔记: Reinforcement Learning: An Introduction, Richard S. S ...

  6. 强化学习读书笔记 - 09 - on-policy预测的近似方法

    强化学习读书笔记 - 09 - on-policy预测的近似方法 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and A ...

  7. 算法笔记之KMP算法

    本文是<算法笔记>KMP算法章节的阅读笔记,文中主要内容来源于<算法笔记>.本文主要介绍了next数组.KMP算法及其应用以及对KMP算法的优化. KMP算法主要用于解决字符串 ...

  8. 强化学习读书笔记 - 11 - off-policy的近似方法

    强化学习读书笔记 - 11 - off-policy的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and ...

  9. 强化学习读书笔记 - 10 - on-policy控制的近似方法

    强化学习读书笔记 - 10 - on-policy控制的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton an ...

  10. 算法笔记_071:SPFA算法简单介绍(Java)

    目录 1 问题描述 2 解决方案 2.1 具体编码   1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个 ...

随机推荐

  1. 树莓派 3b+型号 pip3方式 安装 TensorFlow

    树莓派系统为: 首先选择 pip3  方式进行安装: 树莓派上执行: 发现速度过慢,于是选择先在Windows主机上下载,然后再把文件传到树莓派上进行安装. 不过后来发现即使使用迅雷这样强大的下载工具 ...

  2. gym库中类FilterObservation(ObservationWrapper)的理解

    filter_observation.py模块中类 FilterObservation(ObservationWrapper) 的理解. 代码: import copy from gym import ...

  3. mysql数据库主从同步读写分离(二)读写分离实现

    步骤: a.解压文件 b.添加如下配置文件 c.mysql-proxy.conf配置内容如下: 1 [mysql-proxy] 2 admin-username=proxy 3 admin-passw ...

  4. VisionOn:新一代在线制图工具,简单易用又高颜值

    Vision On 一款集流程图.思维导图.白板于一体的轻量级在线图形工具 在工作和学习过程中,通过可视化的图形,有助于清晰高效地表达我们的灵感.想法.思想. 工欲善其事,必先利其器. 目前,思维导图 ...

  5. 精读代码,实战进阶&实践Task2

    背景 从零入门AI生图原理&实践 是 Datawhale 2024 年 AI 夏令营第四期的学习活动("AIGC"方向),基于魔搭社区"可图Kolors-LoRA ...

  6. WPF:静态、动态资源以及资源词典

    WPF:静态.动态资源以及资源词典 静态资源与动态资源 我们常常会使用样式或者控件模板放在Window.Resources中,比如这样: 静态资源与动态资源使用如下: <Window.Resou ...

  7. git 修改提交作者及提交日期

    进入交互式 rebase 模式 git rebase -i <commit> 你要修改哪次提交的日期,就 rebase 到该提交的上一次提交. git 提示你新的分支要包含哪些提交,默认已 ...

  8. 偶发的系统卡顿内存飙升导致OOM

    线上有个小程序,客户反馈的现象是偶发性的卡主没响应,前端失去连接,点其他菜单都没响应.通过查看配置的dump目录有很多的GC日志,以及生成的一个堆内存快照. JVM的配置参数大概为: -Xms512M ...

  9. android java.lang.Exception: java.net.ProtocolException: Expected HTTP 101 response

    Android stomp长连接连接异常: 报错:java.lang.Exception: java.net.ProtocolException: Expected HTTP 101 response ...

  10. MyBatis分页实现

    目录 分页实现 limit实现分页 RowBounds分页 分页实现 limit实现分页 为什么需要分页? 在学习mybatis等持久层框架的时候,会经常对数据进行增删改查操作,使用最多的是对数据库进 ...