如何使用keras加载下载好的数据集
https://blog.csdn.net/houchaoqun_xmu/article/details/78492718
【keras】解决 example 案例中 MNIST 数据集下载不了的问题
前言:
keras 源码中下载MNIST的方式是 path = get_file(path, origin='https://s3.amazonaws.com/img-datasets/mnist.npz'),数据源是通过 url = https://s3.amazonaws.com/img-datasets/mnist.npz 进行下载的。访问该 url 地址被墙了,导致 MNIST 相关的案例都卡在数据下载的环节。本文主要提供解决方案,让需要的读者可以跑案例的代码感受一下。
本文的贡献主要包括如下:
1)提供 mnist_npz 数据集;
2)分析了关于 mnist 几个相关的源代码;
3)提供了一种能够顺利运行 keras 源码中 example 下 mnist 的相关案例;
4)找到了另外几种解决方案,提供了相关的链接。
numpy.load(path)
numpy.load() 函数起到很重要的作用。它可以读取 .npy .npz 等文件类型,并返回对应的数据类型。
1)如果文件类型是 .pny 则返回一个1维数组。
2)如果文件类型是 .npz 则返回一个类似字典的数据类型,包含 {filename: array} 键值对。如,本例中的键值对如下所示:
- f = np.load(path)
- x_train, y_train = f['x_train'], f['y_train']
- x_test, y_test = f['x_test'], f['y_test']
- f.close()
详情请参考:https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html
原始 .\keras\examples\mnist_mlp.py
- # -*- coding: utf-8 -*-
- '''Trains a simple deep NN on the MNIST dataset.
- Gets to 98.40% test accuracy after 20 epochs
- (there is *a lot* of margin for parameter tuning).
- 2 seconds per epoch on a K520 GPU.
- '''
- from __future__ import print_function
- import keras
- from keras.datasets import mnist
- from keras.models import Sequential
- from keras.layers import Dense, Dropout
- from keras.optimizers import RMSprop
- batch_size = 128
- num_classes = 10
- epochs = 20
- # the data, shuffled and split between train and test sets
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- x_train = x_train.reshape(60000, 784)
- x_test = x_test.reshape(10000, 784)
- x_train = x_train.astype('float32')
- x_test = x_test.astype('float32')
- x_train /= 255
- x_test /= 255
- print(x_train.shape[0], 'train samples')
- print(x_test.shape[0], 'test samples')
- # convert class vectors to binary class matrices
- y_train = keras.utils.to_categorical(y_train, num_classes)
- y_test = keras.utils.to_categorical(y_test, num_classes)
- model = Sequential()
- model.add(Dense(512, activation='relu', input_shape=(784,)))
- model.add(Dropout(0.2))
- model.add(Dense(512, activation='relu'))
- model.add(Dropout(0.2))
- model.add(Dense(10, activation='softmax'))
- model.summary()
- ###
- # 1)categorical_crossentropy(output, target, from_logits=False):
- # 计算输出张量和目标张量的Categorical crossentropy(类别交叉熵),目标张量与输出张量必须shape相同。
- # 多分类的对数损失函数,与softmax分类器相对应的。
- #
- # 2)RMSprop()
- # AdaGrad算法的改进。鉴于神经网络都是非凸条件下的,RMSProp在非凸条件下结果更好,改变梯度累积为指数衰减的移动平均以丢弃遥远的过去历史。
- # reference:http://blog.csdn.net/bvl10101111/article/details/72616378
- #
- model.compile(loss='categorical_crossentropy',
- optimizer=RMSprop(),
- metrics=['accuracy'])
- history = model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=epochs,
- verbose=1,
- validation_data=(x_test, y_test))
- score = model.evaluate(x_test, y_test, verbose=0)
- print('Test loss:', score[0])
- print('Test accuracy:', score[1])
.\keras\keras\datasets\mnist.py - load_data()
- # -*- coding: utf-8 -*-
- from ..utils.data_utils import get_file
- import numpy as np
- def load_data(path='mnist.npz'):
- """Loads the MNIST dataset.
- # Arguments
- path: path where to cache the dataset locally
- (relative to ~/.keras/datasets).
- # Returns
- Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
- # numpy.load()
- # numpy.load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII')
- # 1) Load arrays or pickled objects from .npy, .npz or pickled files
- # 2)
- # reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html
- """
- path = get_file(path, origin='https://s3.amazonaws.com/img-datasets/mnist.npz')
- f = np.load(path)
- x_train, y_train = f['x_train'], f['y_train']
- x_test, y_test = f['x_test'], f['y_test']
- f.close()
- return (x_train, y_train), (x_test, y_test)
下载 mnist.npz 数据集
本文使用的 mnist.npz 数据集是通过一个 japan 的服务器下载得到的,在此免费分享给大家。如果下载有问题的话,可以留言哈。
下载链接:https://pan.baidu.com/s/1jH6uFFC 密码: dw3d
改造 mnist_mlp.py
方法1:
mnist_mlp.py 源码是使用如下命令获取数据集:
- # the data, shuffled and split between train and test sets
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
调用的是 .\keras\keras\datasets\mnist.py 脚本中的 def load_data(path='mnist.npz') 函数,也就是因为网址被墙了导致不能正常运行的原因。本文事先下好了 mnist.npz 数据集,然后改动了一些代码使之正常运行。换句话说,本文使用的是“读取本地数据集”的方法,步骤如下:
1)下载好 mnist_npz 数据集,并将其放于 .\keras\examples 目录下。
2)改动后的 mnist_mlp.py 代码如下:
- # -*- coding: utf-8 -*-
- '''Trains a simple deep NN on the MNIST dataset.
- Gets to 98.40% test accuracy after 20 epochs
- (there is *a lot* of margin for parameter tuning).
- 2 seconds per epoch on a K520 GPU.
- '''
- from __future__ import print_function
- import keras
- from keras.datasets import mnist
- from keras.models import Sequential
- from keras.layers import Dense, Dropout
- from keras.optimizers import RMSprop
- batch_size = 128
- num_classes = 10
- epochs = 20
- # the data, shuffled and split between train and test sets
- # (x_train, y_train), (x_test, y_test) = mnist.load_data()
- import numpy as np
- path='./mnist.npz'
- f = np.load(path)
- x_train, y_train = f['x_train'], f['y_train']
- x_test, y_test = f['x_test'], f['y_test']
- f.close()
- x_train = x_train.reshape(60000, 784).astype('float32')
- x_test = x_test.reshape(10000, 784).astype('float32')
- x_train /= 255
- x_test /= 255
- print(x_train.shape[0], 'train samples')
- print(x_test.shape[0], 'test samples')
- # convert class vectors to binary class matrices
- # label为0~9共10个类别,keras要求格式为binary class matrices
- y_train = keras.utils.to_categorical(y_train, num_classes)
- y_test = keras.utils.to_categorical(y_test, num_classes)
- # add by hcq-20171106
- # Dense of keras is full-connection.
- model = Sequential()
- model.add(Dense(512, activation='relu', input_shape=(784,)))
- model.add(Dropout(0.2))
- model.add(Dense(512, activation='relu'))
- model.add(Dropout(0.2))
- model.add(Dense(num_classes, activation='softmax'))
- model.summary()
- model.compile(loss='categorical_crossentropy',
- optimizer=RMSprop(),
- metrics=['accuracy'])
- history = model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=epochs,
- verbose=1,
- validation_data=(x_test, y_test))
- score = model.evaluate(x_test, y_test, verbose=0)
- print('Test loss:', score[0])
- print('Test accuracy:', score[1])
运行效果如下所示:
- 60000 train samples
- 10000 test samples
- _________________________________________________________________
- Layer (type) Output Shape Param #
- =================================================================
- dense_1 (Dense) (None, 512) 401920
- _________________________________________________________________
- dropout_1 (Dropout) (None, 512) 0
- _________________________________________________________________
- dense_2 (Dense) (None, 512) 262656
- _________________________________________________________________
- dropout_2 (Dropout) (None, 512) 0
- _________________________________________________________________
- dense_3 (Dense) (None, 10) 5130
- =================================================================
- Total params: 669,706
- Trainable params: 669,706
- Non-trainable params: 0
- _________________________________________________________________
- Train on 60000 samples, validate on 10000 samples
- Epoch 1/20
- 2017-11-09 23:06:16.881800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:977] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0)
- ... ...
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0387 - acc: 0.9888 - val_loss: 0.0706 - val_acc: 0.9814
- Epoch 8/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0341 - acc: 0.9899 - val_loss: 0.0789 - val_acc: 0.9827
- Epoch 9/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0304 - acc: 0.9911 - val_loss: 0.0851 - val_acc: 0.9833
- Epoch 10/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0290 - acc: 0.9918 - val_loss: 0.0867 - val_acc: 0.9818
- Epoch 11/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0264 - acc: 0.9924 - val_loss: 0.0881 - val_acc: 0.9833
- Epoch 12/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0261 - acc: 0.9928 - val_loss: 0.1095 - val_acc: 0.9801
- Epoch 13/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0246 - acc: 0.9931 - val_loss: 0.1012 - val_acc: 0.9830
- Epoch 14/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0233 - acc: 0.9935 - val_loss: 0.1116 - val_acc: 0.9812
- Epoch 15/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0223 - acc: 0.9942 - val_loss: 0.1016 - val_acc: 0.9832
- Epoch 16/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0214 - acc: 0.9943 - val_loss: 0.1053 - val_acc: 0.9832
- Epoch 17/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0178 - acc: 0.9950 - val_loss: 0.1095 - val_acc: 0.9838
- Epoch 18/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0212 - acc: 0.9949 - val_loss: 0.1158 - val_acc: 0.9822
- Epoch 19/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0197 - acc: 0.9951 - val_loss: 0.1112 - val_acc: 0.9831
- Epoch 20/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0203 - acc: 0.9951 - val_loss: 0.1097 - val_acc: 0.9833
- Test loss: 0.109655842465
- Test accuracy: 0.9833
方法2:参考该【博文】
(x_train, y_train), (x_test, y_test) = mnist.load_data(path='/home/duchao/下载/mnist.npz')
Reference:
keras 中文文档:http://keras-cn.readthedocs.io/en/latest/
阅读源码遇到的一些TF、keras函数及问题:http://blog.csdn.net/jsliuqun/article/details/64444302
python读取mnist数据集:https://blog.mythsman.com/2016/01/25/1/
如何使用keras加载下载好的数据集的更多相关文章
- 【tf.keras】tf.keras加载AlexNet预训练模型
目录 从 PyTorch 中导出模型参数 第 0 步:配置环境 第 1 步:安装 MMdnn 第 2 步:得到 PyTorch 保存完整结构和参数的模型(pth 文件) 第 3 步:导出 PyTorc ...
- 使用Huggingface在矩池云快速加载预训练模型和数据集
作为NLP领域的著名框架,Huggingface(HF)为社区提供了众多好用的预训练模型和数据集.本文介绍了如何在矩池云使用Huggingface快速加载预训练模型和数据集. 1.环境 HF支持Pyt ...
- pytorch加载语音类自定义数据集
pytorch对一下常用的公开数据集有很方便的API接口,但是当我们需要使用自己的数据集训练神经网络时,就需要自定义数据集,在pytorch中,提供了一些类,方便我们定义自己的数据集合 torch.u ...
- ubuntu wubi.exe 直接加载下载好的 amd64.tar.xz
玩了这么久的LINUX,一直都是直机装UBUNTU,虚一下XP的,后来不得不直机用WIN7,只能WUBI装一下UBUNTU了.不得不说,在WIN7下虚一个UBUNTU真是相当麻烦.网络那块很是难搞,而 ...
- keras RAdam优化器使用教程, keras加载模型包含自定义优化器报错 如何解决?
本文首发于个人博客https://kezunlin.me/post/c691f02b/,欢迎阅读最新内容! python keras RAdam tutorial and load custom op ...
- [Tensorflow] 使用 tf.keras.utils.get_file() 下载 MS-COCO 2014 数据集
import argparse import tensorflow as tf tf.enable_eager_execution() def main(args): ""&quo ...
- Keras.applications.models权重:存储路径及加载
网络中断原因导致keras加载vgg16等模型权重失败, 直接解决方法是:删掉下载文件,再重新下载 Windows-weights路径: C:\Users\你的用户名\.keras\models Li ...
- Python 动态加载并下载"梨视频"短视频
下载链接:http://www.pearvideo.com/category_1 import requests from lxml import etree import re from urlli ...
- TensorFlow2.0(10):加载自定义图片数据集到Dataset
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
随机推荐
- Python pip设置为清华镜像
设置为默认镜像 pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
- Ganglia 安装 No package 'ck' found
安装ConcurrecyKit,下载地址:https://github.com/concurrencykit/ck 编译安装即可 下面是一个歪果仁的解决办法,不过我没用上 I was buildi ...
- Maven:Unable to import maven project: See logs for details
一.开发环境 idea2019.1 + apache-maven-3.6.2 + JDK 1.8.0_111 二.问题说明 导入maven 多模块工程之后,发现工程没有多模块的展开,而且也没有在 Ex ...
- JAVAEE 和项目开发(第三课:HTTP的请求头和请求方式)
HTTP 协议之请求格式 请求格式的结构:请求行:请求方式.请求的地址和 HTTP 协议版本 请求头:消息报头,一般用来说明客户端要使用的一些附加信息 空行: 位于请求行和请求数据之间,空行是必须 ...
- java多线程并发(一)-- 相关基础知识
java多线程的知识是java程序员都应该掌握的技能,目前我接触的项目上用的不多,花点时间熟悉熟悉. 一.基础知识 1.什么是进程? 进程是具有一定独立功能的正在运行过程中的程序,是操作系统进行资源分 ...
- socket 错误之:OSError: [WinError 10057] 由于套接字没有连接并且(当使用一个 sendto 调用发送数据报套接字时)没有提供地址,发送或接收数据的请求没有被接受。
出错的代码 #server端 import socket import struct sk=socket.socket() sk.bind(('127.0.0.1',8080)) sk.listen( ...
- Tensorflow学习教程------Fetch and Feed
#coding:utf-8 import tensorflow as tf #Fetch input1 = tf.constant(3.0) input2 = tf.constant(1.0) inp ...
- page-break-before和page-break-after 实现分页打印
page-break-before和page-break-after CSS属性并不会修改网页在屏幕上的显示,这两个属性是用来控制文件的打印方式.每个打印属性都可以设定4种设定值:auto.alway ...
- 算法应用杂谈-xgboost的偏差
一个小样本的cvr 估计问题中, 考虑用xgboost 模型. 发现结果的估计偏差很大. 仔细研究后, 发现现象: 迭代步数不多, 一般3,5步就停了. 预测的分数偏差很大, 分布不匀. pcoc很大 ...
- 使用plantuml插件
安装 https://github.com/jvantuyl/sublime_diagram_plugin 安装依赖 brew install graphviz 把sublime_diagram_pl ...