题目描述

现给定n个闭区间[ai, bi],1<=i<=n。这些区间的并可以表示为一些不相交的闭区间的并。你的任务就是在这些表示方式中找出包含最少区间的方案。你的输出应该按照区间的升序排列。这里如果说两个区间[a, b]和[c, d]是按照升序排列的,那么我们有a<=b<c<=d。

请写一个程序:

读入这些区间;

计算满足给定条件的不相交闭区间;

把这些区间按照升序输出。

输入输出格式

输入格式

第一行包含一个整数n,3<=n<=50000,为区间的数目。以下n行为对区间的描述,第i行为对第i个区间的描述,为两个整数1<=ai<bi<=1000000,表示一个区间[ai, bi]。

输出格式

输出计算出来的不相交的区间。每一行都是对一个区间的描述,包括两个用空格分开的整数,为区间的上下界。你应该把区间按照升序排序。

样例

INPUT

5

5 6

1 4

10 10

6 9

8 10

OUTPUT

1 4

5 10

HINT

SOLUTION

差分

感觉差分是我们这种涉及区间的处理的问题的很重要的一个考虑方式啊qwq

接下来有10行废话。

这题不难。

我想过贪心,想过区间dp,想过建树bfs,就是没想到差分。

先看数据范围:\(3\leq n \leq 50000,1\leq a_i<b_i\leq 1000000\),

首先我们就把\(O(n^2)\)的方案给毙掉了。

这种题不是\(O(n)\)就是\(O(nlogn)\),对吧。

建树不好建,建了也不知道怎么写,毙掉。

就剩\(O(n)\)的了。

dp?怎么写啊?我不会,毙掉。

贪心把区间从头开始往后拓,直到出现断点?那万一全部连起来了呢?不好找断点,毙掉。

然后把目光放在这里:\(1\leq a_i<b_i\leq 1000000\),说不定有\(O(max(b_i))\)的写法呢?然后老老实实翻了题解。。。

所以我们考虑差分。

进来一个左端点就在相应位置+1,进来一个右端点就在相应位置-1,对,这就是典型的差分。

当我们的点的左边为正,而当前点为0,这说明有若干(也可能只有一)对区间从这里开始。

同理,当我们的点的右边为0,而当前点为0,这说明有若干(也可能只有一)对区间在这里完成了匹配,可以断开作为一段完整区间。

然后注意一下形同\([i,i]\)的区间要特判一下就可以了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std;
#define Min(a,b) ((a<b)?a:b)
#define Max(a,b) ((a>b)?a:b)
const int N=101000,M=1010000;
inline int read(){
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9') {x=x*10+ch-48;ch=getchar();}
return x*f;}
struct NODE{int d,u;}nd[N];
bool cmp(NODE a,NODE b) {return a.d<b.d;}
struct ITV{int l,r;}ans[N];
int n,itv[M],L=M,R=0;
int main(){
int i,j;
n=read();int cnt=0;
for (i=1;i<=n;++i){
nd[++cnt].d=read();nd[cnt].u=1;L=Min(L,nd[cnt].d);R=Max(R,nd[cnt].d);
nd[++cnt].d=read();nd[cnt].u=-1;L=Min(L,nd[cnt].d);R=Max(R,nd[cnt].d);}
memset(itv,0,sizeof(itv));
sort(nd+1,nd+1+cnt,cmp);
int p=1;cnt=0;
for (i=L;i<=R;++i){
itv[i]=itv[i-1];int flg=0,rec=0;
while ((nd[p].d==i)&&(p<=2*n)) {flg=1;rec+=nd[p].u;itv[i]+=nd[p].u;p++;}
if ((!itv[i-1])&&(flg)&&(!rec)) {ans[++cnt].l=i;ans[cnt].r=i;}//对于[i,i]型区间的特判
if ((!(itv[i-1]))&&(itv[i])) ans[++cnt].l=i;
else if ((itv[i-1])&&(!(itv[i]))) ans[cnt].r=i;
}
for (i=1;i<=cnt;++i) printf("%d %d\n",ans[i].l,ans[i].r);
return 0;
}

Luogu_2434_[SDOI2005]区间的更多相关文章

  1. 洛谷——P2434 [SDOI2005]区间

    P2434 [SDOI2005]区间 题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间 ...

  2. 洛谷P2434 [SDOI2005]区间

    题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排列 ...

  3. P2434 [SDOI2005]区间

    题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排列 ...

  4. [SDOI2005]区间

    题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排列 ...

  5. 【洛谷】P2434 [SDOI2005]区间(暴力)

    题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排列 ...

  6. luogu P2434 [SDOI2005]区间

    题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排列 ...

  7. 「LuoguP2434」 [SDOI2005]区间(贪心

    Description 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照 ...

  8. 洛谷 2434 [SDOI2005]区间

    [题解] 鲜活的大水题... 把区间排个序然后瞎搞就可以了,发现现在区间的左端点比之前区间的最大的右端点还大,那就增加一个答案区间.每次更新目前最大右区间. #include<cstdio> ...

  9. 题解 洛谷P2434 【[SDOI2005]区间】

    本题的贪心策略是以区间起点位置由小到大排序,然后开始合并. 区间按起点顺序由小到大排序,可以最大化合并成功的可能. 这个脑补应该不难想出来.(读者自证不难 直接上代码: #include <bi ...

随机推荐

  1. [原]C++新标准之std::ratio

    原 总结 ratio  概览 类定义 预定义ratio 应用 示例代码 参考资料 概览 std::ratio定义在<ratio>文件中,提供了编译期的比例计算功能.为std::chrono ...

  2. Django专题之ORM

    ORM介绍 ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. 简单的说,ORM是通过使用描述 ...

  3. 使用python列出目录下的所有文件

    https://stackoverflow.com/questions/3964681/find-all-files-in-a-directory-with-extension-txt-in-pyth ...

  4. 吴裕雄--天生自然运维技术:LMT

    LMT,Local Maintenance Terminal的缩写,意思是本地维护终端.LMT是一个逻辑概念.LMT连接到RNC外网,提供NODE B操作维护的用户界面. LMT也是许可证管理技术Li ...

  5. 吴裕雄--天生自然 PYTHON3开发学习:正则表达式

    import re print(re.match('www', 'www.runoob.com').span()) # 在起始位置匹配 print(re.match('com', 'www.runoo ...

  6. 远程关机 (Windows shutdown Windows)

    在某些场景,可使用远程关机控制整个局域网中的所有电脑进行一键关机或重启,便于管理,以提高工作效率. 从远程系统强制关机,首先需要进行一些必要的设置. 1.使用 win + R 打开运行,输入gpedi ...

  7. servletHomeWork

    2. http全称是什么? 超文本传输协议(HTTP, HyperText Transfer Protocol)是互联网上应用为最广泛的一种网络协议. 3.http协议是无状态的协议是什么意思?请说明 ...

  8. 关于JDBC、JdbcTemplate使用遇到的坑

    1.如果数据源是oracle(mysql结尾是可以使用";"的),sql字符串中结尾处禁止使用分号";",不然会报错:java.sql.SQLException ...

  9. [LC] 93. Restore IP Addresses

    Given a string containing only digits, restore it by returning all possible valid IP address combina ...

  10. 【ubuntu】乱七八糟

    https://blog.csdn.net/totorocyx/article/details/80032556 https://blog.csdn.net/weixin_40662331/artic ...