题目描述

小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话:

对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点 s 和 t 不在同一个部分中,则称这个划分是关于 s,t 的割。对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而 s,t的最小割指的是在关于 s,t的割中容量最小的割。

现给定一张无向图,小白有若干个形如“图中有多少个无序点对的最小割的容量不超过 x ”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为小蓝的好友,你又有任务了。

输入格式

本题有多组测试数据。

第一行一个整数 T,表示测试数据组数。

对于每组测试数据,第一行两个整数 n,m,表示图的点数和边数。

接下来 m 行,每行三个整数 u,v,c表示有一条权为 ccc 的无向边 (u,v)。不保证图中无重边。

接下来一行一个整数 q 表示询问的个数,下面 q 行每行一个整数 x 描述一组询问。

输出格式

对于每一组测试数据输出 q 行,每行一个整数表示对应询问的答案。对于满足条件的点对 (p,q)和点对 (q,p) 只应该在答案中统计一次。

在两组测试数据之间需要输出一行空行。

输入输出样例

输入 #1

1

5 0

1

0

输出 #1

10

说明/提示

对于 100 的数据,1≤T≤10 ,1≤n≤150,0≤m≤30000,$$1 \leq x \leq 2^{31} - 1 $$ ,0≤q≤300

题解

最小割树(或者就是分治) , 每次选出两个点求出他们的最小割 , 在用这个值更新两边的最小割。

这题不难 , 但我还是调了好久(人话:我好弱啊!!!)

注意

1.题里给的是无向图 , 要建双向边 , 网络流如果要建双向边就不用对每个边再建那流量为0的边了。

2.\(ans[i][j]\) 更新时 \(ans[j][i]\) 也得更新啊!!

3.多测清空。

4.每组数组做完之后要输出回车

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<cstring>
#include<queue>
#include<cmath>
using namespace std;
const int N = 1005 , M = 100100 , inf = 2e9;
inline int read()
{
register int x = 0 , f = 0; register char c = getchar();
while(c < '0' || c > '9') f |= c == '-' , c = getchar();
while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0' , c = getchar();
return f ? -x : x;
}
int n , m , S , T , cnt = 1;
int d[N] , vis[N] , head[N] , ans[N][N] , t1[N] , t2[N] , a[N];
struct edge{ int v , nex , c; } e[M];
inline void add(int u , int v , int c) { e[++cnt].v = v; e[cnt].nex = head[u]; e[cnt].c = c; head[u] = cnt; e[++cnt].v = u; e[cnt].nex = head[v]; e[cnt].c = c; head[v] = cnt; return ; } queue<int> q;
bool bfs()
{
memset(d , 0 , sizeof d); d[S] = 1; q.push(S);
while(q.size())
{
int x = q.front(); q.pop();
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v; if(d[v] || e[i].c == 0) continue;
d[v] = d[x] + 1; q.push(v);
}
}
return d[T] != 0;
} int dfs(int x , int flow)
{
if(x == T || flow == 0) return flow;
int res = 0 , k;
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v; if(e[i].c == 0 || d[v] != d[x] + 1) continue;
k = dfs(v , min(e[i].c , flow));
if(k)
{
e[i].c -= k; e[i^1].c += k; res += k; flow -= k;
if(flow == 0) return res;
}
else d[v] = 0;
}
return res;
} int Dinic()
{
for(int i = 2 ; i <= cnt ; i += 2) e[i].c = e[i^1].c = (e[i^1].c + e[i].c) >> 1;
int ans = 0 , flow;
while(bfs()) while(flow = dfs(S , inf)) ans += flow;
return ans;
} void dfs(int x)
{
vis[x] = 1;
for(int i = head[x] ; i ; i = e[i].nex)
if(e[i].c && !vis[e[i].v]) dfs(e[i].v);
return ;
} void calc(int l , int r)
{
if(l >= r) return ;
memset(vis , 0 , sizeof vis);
S = a[l]; T = a[r]; int flow = Dinic() , cnt1 = 0 , cnt2 = 0; dfs(S);
for(int i = 1 ; i <= n ; ++i) if(vis[i]) for(int j = 1 ; j <= n ; ++j) if(!vis[j]) /*!!!!!!!!!!*/ ans[j][i] = ans[i][j] = min(ans[i][j] , flow);
for(int i = l ; i <= r ; ++i) if(vis[a[i]]) t1[++cnt1] = a[i]; else t2[++cnt2] = a[i];
for(int i = 1 ; i <= cnt1 ; ++i) a[l + i - 1] = t1[i];
for(int i = 1 ; i <= cnt2 ; ++i) a[l + i + cnt1 - 1] = t2[i];
calc(l , l + cnt1 - 1); calc(l + cnt1 , r);
return;
} int solve()
{
n = read(); m = read();
for(int i = 1 , u , v , c ; i <= m ; ++i) u = read() , v = read() , c = read() , add(u , v , c);
for(int i = 1 ; i <= n ; ++i) a[i] = i; memset(ans , 0x3f , sizeof ans);
calc(1 , n);
int Q = read();
while(Q--)
{
int x = read() , res = 0;
for(int i = 1 ; i <= n ; ++i) for(int j = i + 1 ; j <= n ; ++j) if(ans[i][j] <= x) res++;
cout << res << '\n';
}
memset(head , 0 , sizeof head); cnt = 1;
return 0;
} signed main()
{
// freopen("10.in" , "r" , stdin);
int T = read();
while(T --) solve() , cout << '\n';
return 0;
}
/*
2
5 0
1
0
5 0
1
0
*/

P3329 [ZJOI2011]最小割的更多相关文章

  1. BZOJ 2229 / Luogu P3329 [ZJOI2011]最小割 (分治最小割板题)

    题面 求所有点对的最小割中<=c的数量 分析 分治最小割板题 首先,注意这样一个事实:如果(X,Y)是某个s1-t1最小割,(Z,W)是某个s2-t2最小割,那么X∩Z.X∩W.Y∩Z.Y∩W这 ...

  2. BZOJ2229: [Zjoi2011]最小割

    题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include&l ...

  3. 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)

    [BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...

  4. bzoj千题计划139:bzoj2229: [Zjoi2011]最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=2229 最小割树介绍:http://blog.csdn.net/jyxjyx27/article/de ...

  5. [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割

    题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...

  6. 【BZOJ2229】[Zjoi2011]最小割 最小割树

    [BZOJ2229][Zjoi2011]最小割 Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有 ...

  7. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  8. 【洛谷P3329】 [ZJOI2011]最小割(最小割树)

    洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树 ...

  9. [bzoj2229][Zjoi2011]最小割_网络流_最小割树

    最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...

随机推荐

  1. [RHEL8]开启BBR

    # sysctl net.ipv4.tcp_congestion_control net.ipv4.tcp_congestion_control = cubic # sysctl net.ipv4.t ...

  2. dotnetcore3.1 WPF 中使用依赖注入

    dotnetcore3.1 WPF 中使用依赖注入 Intro 在 ASP.NET Core 中默认就已经集成了依赖注入,最近把 DbTool 迁移到了 WPF dotnetcore 3.1, 在 W ...

  3. Sublime Text3添加到右键菜单,"用 SublimeText3 打开"

    在Sublime Text3安装目录下新建一个文件 sublime_addright.inf 文件内容: [Version] Signature="$Windows NT$" [D ...

  4. 11种常用css样式学习大结局滚动条与显示隐藏

    滚动条展示 overflow-x: hidden;/*是否对内容的左/右边缘进行裁剪*/overflow-y: hidden;/*是否对内容的上/下边缘进行裁剪*/overflow:scroll;/* ...

  5. 从 0 使用 SpringBoot MyBatis MySQL Redis Elasticsearch打造企业级 RESTful API 项目实战

    大家好!这是一门付费视频课程.新课优惠价 699 元,折合每小时 9 元左右,需要朋友的联系爱学啊客服 QQ:3469271680:我们每课程是明码标价的,因为如果售价为现在的 2 倍,然后打 5 折 ...

  6. Spring Mvc Http 400 Bad Request问题排查

    如果遇到了Spring MVC报错400,而且没有返回任何信息的情况下该如何排查问题? 问题描述 一直都没毛病的接口,今天测试的时候突然报错400 Bad Request,而且Response没有返回 ...

  7. amr格式转mp3和直接播放amr格式的文件-sunziren

    原创文章,转载请注明出处! 前言: amr作为一种高压缩比的音频格式,受到很多客户的青睐.本文主要涉及两部分的内容,一是amr如何转为mp3格式,二是如何直接播放amr格式的文件. 1. 如何使用Ja ...

  8. centos7 升级sqlite3

    升级sqlite3 官网 点击 1.下载源码 wget https://www.sqlite.org/2019/sqlite-autoconf-3300100.tar.gz 2.解压,编译 .tar. ...

  9. 星星评分-依赖jquery

    https://pan.baidu.com/s/1UWJFh-QJOjSB_yqA8VgHIQ

  10. SQL Server远程数据库操作(备份、还原等)

    · SQL Server远程数据库备份到本地: exp sauser/sapassword@192.168.8.233:1433/DBName file=d:/backup.dmp OWNER=sum ...