题目描述

小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话:

对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点 s 和 t 不在同一个部分中,则称这个划分是关于 s,t 的割。对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而 s,t的最小割指的是在关于 s,t的割中容量最小的割。

现给定一张无向图,小白有若干个形如“图中有多少个无序点对的最小割的容量不超过 x ”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为小蓝的好友,你又有任务了。

输入格式

本题有多组测试数据。

第一行一个整数 T,表示测试数据组数。

对于每组测试数据,第一行两个整数 n,m,表示图的点数和边数。

接下来 m 行,每行三个整数 u,v,c表示有一条权为 ccc 的无向边 (u,v)。不保证图中无重边。

接下来一行一个整数 q 表示询问的个数,下面 q 行每行一个整数 x 描述一组询问。

输出格式

对于每一组测试数据输出 q 行,每行一个整数表示对应询问的答案。对于满足条件的点对 (p,q)和点对 (q,p) 只应该在答案中统计一次。

在两组测试数据之间需要输出一行空行。

输入输出样例

输入 #1

1

5 0

1

0

输出 #1

10

说明/提示

对于 100 的数据,1≤T≤10 ,1≤n≤150,0≤m≤30000,$$1 \leq x \leq 2^{31} - 1 $$ ,0≤q≤300

题解

最小割树(或者就是分治) , 每次选出两个点求出他们的最小割 , 在用这个值更新两边的最小割。

这题不难 , 但我还是调了好久(人话:我好弱啊!!!)

注意

1.题里给的是无向图 , 要建双向边 , 网络流如果要建双向边就不用对每个边再建那流量为0的边了。

2.\(ans[i][j]\) 更新时 \(ans[j][i]\) 也得更新啊!!

3.多测清空。

4.每组数组做完之后要输出回车

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<cstring>
#include<queue>
#include<cmath>
using namespace std;
const int N = 1005 , M = 100100 , inf = 2e9;
inline int read()
{
register int x = 0 , f = 0; register char c = getchar();
while(c < '0' || c > '9') f |= c == '-' , c = getchar();
while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0' , c = getchar();
return f ? -x : x;
}
int n , m , S , T , cnt = 1;
int d[N] , vis[N] , head[N] , ans[N][N] , t1[N] , t2[N] , a[N];
struct edge{ int v , nex , c; } e[M];
inline void add(int u , int v , int c) { e[++cnt].v = v; e[cnt].nex = head[u]; e[cnt].c = c; head[u] = cnt; e[++cnt].v = u; e[cnt].nex = head[v]; e[cnt].c = c; head[v] = cnt; return ; } queue<int> q;
bool bfs()
{
memset(d , 0 , sizeof d); d[S] = 1; q.push(S);
while(q.size())
{
int x = q.front(); q.pop();
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v; if(d[v] || e[i].c == 0) continue;
d[v] = d[x] + 1; q.push(v);
}
}
return d[T] != 0;
} int dfs(int x , int flow)
{
if(x == T || flow == 0) return flow;
int res = 0 , k;
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v; if(e[i].c == 0 || d[v] != d[x] + 1) continue;
k = dfs(v , min(e[i].c , flow));
if(k)
{
e[i].c -= k; e[i^1].c += k; res += k; flow -= k;
if(flow == 0) return res;
}
else d[v] = 0;
}
return res;
} int Dinic()
{
for(int i = 2 ; i <= cnt ; i += 2) e[i].c = e[i^1].c = (e[i^1].c + e[i].c) >> 1;
int ans = 0 , flow;
while(bfs()) while(flow = dfs(S , inf)) ans += flow;
return ans;
} void dfs(int x)
{
vis[x] = 1;
for(int i = head[x] ; i ; i = e[i].nex)
if(e[i].c && !vis[e[i].v]) dfs(e[i].v);
return ;
} void calc(int l , int r)
{
if(l >= r) return ;
memset(vis , 0 , sizeof vis);
S = a[l]; T = a[r]; int flow = Dinic() , cnt1 = 0 , cnt2 = 0; dfs(S);
for(int i = 1 ; i <= n ; ++i) if(vis[i]) for(int j = 1 ; j <= n ; ++j) if(!vis[j]) /*!!!!!!!!!!*/ ans[j][i] = ans[i][j] = min(ans[i][j] , flow);
for(int i = l ; i <= r ; ++i) if(vis[a[i]]) t1[++cnt1] = a[i]; else t2[++cnt2] = a[i];
for(int i = 1 ; i <= cnt1 ; ++i) a[l + i - 1] = t1[i];
for(int i = 1 ; i <= cnt2 ; ++i) a[l + i + cnt1 - 1] = t2[i];
calc(l , l + cnt1 - 1); calc(l + cnt1 , r);
return;
} int solve()
{
n = read(); m = read();
for(int i = 1 , u , v , c ; i <= m ; ++i) u = read() , v = read() , c = read() , add(u , v , c);
for(int i = 1 ; i <= n ; ++i) a[i] = i; memset(ans , 0x3f , sizeof ans);
calc(1 , n);
int Q = read();
while(Q--)
{
int x = read() , res = 0;
for(int i = 1 ; i <= n ; ++i) for(int j = i + 1 ; j <= n ; ++j) if(ans[i][j] <= x) res++;
cout << res << '\n';
}
memset(head , 0 , sizeof head); cnt = 1;
return 0;
} signed main()
{
// freopen("10.in" , "r" , stdin);
int T = read();
while(T --) solve() , cout << '\n';
return 0;
}
/*
2
5 0
1
0
5 0
1
0
*/

P3329 [ZJOI2011]最小割的更多相关文章

  1. BZOJ 2229 / Luogu P3329 [ZJOI2011]最小割 (分治最小割板题)

    题面 求所有点对的最小割中<=c的数量 分析 分治最小割板题 首先,注意这样一个事实:如果(X,Y)是某个s1-t1最小割,(Z,W)是某个s2-t2最小割,那么X∩Z.X∩W.Y∩Z.Y∩W这 ...

  2. BZOJ2229: [Zjoi2011]最小割

    题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include&l ...

  3. 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)

    [BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...

  4. bzoj千题计划139:bzoj2229: [Zjoi2011]最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=2229 最小割树介绍:http://blog.csdn.net/jyxjyx27/article/de ...

  5. [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割

    题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...

  6. 【BZOJ2229】[Zjoi2011]最小割 最小割树

    [BZOJ2229][Zjoi2011]最小割 Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有 ...

  7. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  8. 【洛谷P3329】 [ZJOI2011]最小割(最小割树)

    洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树 ...

  9. [bzoj2229][Zjoi2011]最小割_网络流_最小割树

    最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...

随机推荐

  1. python图片处理PIL

    一.PIL介绍 PIL中所涉及的基本概念有如下几个:通道(bands).模式(mode).尺寸(size).坐标系统(coordinate system).调色板(palette).信息(info)和 ...

  2. mysql 查询指定数据库所有表, 指定表所有列, 指定列所有表 所有外键及索引, 以及索引的创建和删除

    查询指定 数据库 中所有 表 (指定数据库的,所有表) // 可以把 TABLE_NAME 换成 * 号, 查看更丰富的信息 SELECT TABLE_NAME FROM information_sc ...

  3. phpstorm设置debug调试

    先去下载xdebug.dll文件.将下面自己的phpinfo的文字信息复制到https://xdebug.org/wizard.php中,下载它提供的xdebug.dll的版本 下载完成后将php_x ...

  4. ShiroConfig配置文件无法通过@Value加载yml变量的解决办法

    /** * 配置Shiro生命周期处理器 * 使用springboot整合shiro时,@value注解无法读取application.yml中的配置 *解决方法:将LifecycleBeanPost ...

  5. js文本复制插件&vue

    /* HTML: * <a href="javascript:;" class="copy" data-clipboard-text="copy ...

  6. XSS跨站测试代码

    '><script>alert(document.cookie)</script>='><script>alert(document.cookie)&l ...

  7. [Contract] Solidity 判断 mapping 值的存在

    比如 mapping(address => uint) tester,只需要判断 mapping 是否为默认值 0, tester[msg.sender] == 0 "You can ...

  8. python3-cookbook笔记:第四章 迭代器与生成器

    python3-cookbook中每个小节以问题.解决方案和讨论三个部分探讨了Python3在某类问题中的最优解决方式,或者说是探讨Python3本身的数据结构.函数.类等特性在某类问题上如何更好地使 ...

  9. HAProxy 使用小记

    PS:写在开头,虽然HAProxy优点很多,但是现在网上可参考的HAProxy文档真的少之又少,so,我把最近在项目中使用的心得整理下,供大家参考,如有侵权或错误之处,还请联系更正,谢谢! 好了,下面 ...

  10. Beego 过滤器

    过滤器 beego 支持自定义过滤中间件,例如安全验证,强制跳转等. 过滤器函数如下所示: beego.InsertFilter(pattern string, position int, filte ...