[HNOI2013] 游走 - 概率期望,高斯消元,贪心
假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心。现在考虑如何求期望次数。
由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数
考虑每个点对另个点的贡献,得到方程组,暴力高斯消元
注意走到最后一个点就结束了,所以相当于它不能有出边
#include <bits/stdc++.h>
#define eps 1e-6
using namespace std;
const int N = 1005;
double a[N][N];
int n,m,d[N],g[N][N],t1,t2;
bool gauss_jordan()
{
for(int i=1; i<=n; i++)
{
int r=i;
for(int j=i+1; j<=n; j++)
if(fabs(a[j][i])>fabs(a[r][i]))
r=j;
if(r-i)
for(int j=1; j<=n+1; j++)
swap(a[i][j],a[r][j]);
if(fabs(a[i][i])<eps)
return 0;
for(int j=1; j<=n; j++)
if(j-i)
{
double tmp=a[j][i]/a[i][i];
for(int k=i+1; k<=n+1; k++)
a[j][k]-=a[i][k]*tmp;
}
}
for(int i=1; i<=n; i++)
a[i][n+1]/=a[i][i];
return 1;
}
vector <pair<int,int> > E;
double res[N*N];
int main()
{
ios::sync_with_stdio(false);
cin>>n>>m;
for(int i=1;i<=m;i++) {
cin>>t1>>t2;
g[t1][t2]=1;
g[t2][t1]=1;
d[t1]++;
d[t2]++;
E.push_back(make_pair(t1,t2));
}
a[1][n+1]=1;
a[n][n]=1;
for(int i=1;i<n;i++) {
a[i][i]=1;
for(int j=1;j<=n;j++)
if(g[j][i])
a[i][j] -= 1.0/d[j];
}
gauss_jordan();
double ans = 0;
for(int i=0;i<m;i++)
res[i]=a[E[i].first][n+1]/d[E[i].first] + a[E[i].second][n+1]/d[E[i].second];
sort(res,res+m);
for(int i=0;i<m;i++) ans+=res[i]*(m-i);
printf("%.3f\n",ans);
}
[HNOI2013] 游走 - 概率期望,高斯消元,贪心的更多相关文章
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
- BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- 2018.09.23 bzoj3143: [Hnoi2013]游走(dp+高斯消元)
传送门 显然只需要求出所有边被经过的期望次数,然后贪心把边权小的边定城大的编号. 所以如何求出所有边被经过的期望次数? 显然这只跟边连接的两个点有关. 于是我们只需要求出两个点被经过的期望次数. 对于 ...
- BZOJ 3143 游走 | 数学期望 高斯消元
啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下 ...
- BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143 (luogu) https://www.luogu.org/pro ...
- [HNOI2011]XOR和路径 概率期望 高斯消元
题面 题解:因为异或不太好处理,,,因此按位来算,这样最后的答案就是每一位上的值乘对应的权值再求和.本着期望要倒退的原则,,,我们设$f[i]$表示从$i$到$n$,xor和为1的概率.那么观察$xo ...
- luoguP4457 [BJOI2018]治疗之雨 概率期望 + 高斯消元
应该是最后一道紫色的概率了....然而颜色啥也代表不了.... 首先看懂题意: 你现在有$p$点体力,你的体力上限为$n$ 在一轮中, 1.如果你的体力没有满,你有$\frac{1}{m + 1}$的 ...
- 4.23 子串 AC自动机 概率期望 高斯消元
考虑40分. 设出状态 f[i]表示匹配到了i位还有多少期望长度能停止.可以发现这个状态有环 需要高斯消元. 提供一种比较简单的方法:由于期望的线性可加性 可以设状态f[i]表示由匹配到i到匹配到i+ ...
- BZOJ4820 SDOI2017硬币游戏(概率期望+高斯消元+kmp)
容易想到的做法是建出AC自动机,高斯消元.然而自动机上节点数量是nm的. 注意到我们要求的变量只有n个,考虑将其他不用求的节点合并为一个变量.这个变量即表示随机生成一个串,其不包含任何一个模板串的概率 ...
随机推荐
- opencv —— src.at<Vec3b>(i, j)[0]、src.at<uchar>(i, j)、src.ptr<uchar>(i) 访问图像的单个像素
动态地址访问像素:src.at<Vec3b>(i, j)[0].src.at<uchar>(i, j) int b = src.at<Vec3b>(i, j)[0 ...
- 一键安装最新内核并开启 BBR 脚本
最近,Google 开源了其 TCP BBR 拥塞控制算法,并提交到了 Linux 内核,从 4.9 开始,Linux 内核已经用上了该算法.根据以往的传统,Google 总是先在自家的生产环境上线运 ...
- Web_0005:阿里云服务器OSS权限的配置开通
创建用户 1,创建子用户 2,点击新建用户 3,设置账号类型,可以同时选 设置权限 1,设置对阿里云模块的控制权限,如 oss ecs 等的访问控制权限 2,点击所需的权限 3,获取账号的Acess ...
- 关于iScroll在安卓移动端/chrome模拟移动端上下滑动卡顿问题处理!!!!真实可靠!!!已解决!!!
滑动卡顿效果 安卓手机打开微信浏览网页,Chrome模拟手机浏览网页,都出现的问题滑动卡顿! 修改代码点: 1. <style type="text/css"> ...
- mui下拉刷新上拉加载
新外卖商家端主页订单大厅页面 使用mui双webview,实现下拉刷新上拉加载 主页面: order_index.html <!doctype html> <html> < ...
- Android之碎片Fragment
Fragment是个特别的存在,有点像报纸上的专栏,看起来只占据页面的一小块,但是这一小块有自己的生命周期,可以自行其是,仿佛独立王国,并且这一小块的特性无论在哪个页面,给一个位置就行,添加以后不影响 ...
- java中equals与==号的区别
1.==号对于基本数据类型来说,比较的是值,对于引用数据类型来说比较的是地址值 2.equals方法在object类中,比较的是地址值,但是String类重写了Object类中的equals方法,所以 ...
- P3206 [HNOI2010]城市建设 [线段树分治+LCT维护动态MST]
Problem 这题呢 就边权会在某一时刻变掉-众所周知LCT不支持删边的qwq- 所以考虑线段树分治- 直接码一发 如果 R+1 这个时间修改 那就当做 [L,R] 插入了一条边- 然后删的边和加的 ...
- win10修改jupyter notebook默认路径
安装anaconda3 ,因此自带jupyter notebook 发送到jupyter notebook到桌面快捷方式 右击属性,将目标的%USERPROFILE%,修该为自己需要的路径 起始位置修 ...
- 《Python学习手册 第五版》 -第14章 迭代和推导
承接上一章for循环的讲解,迭代和推导,是对for循环的一种深入的探索和扩展 本章重点内容 1.迭代 1)什么是迭代?都有哪些分类 2)常规的使用方法 3)多遍迭代器VS单遍迭代器 2.列表推导 1) ...