【52.55%】【BZOJ 4520】K远点对
Time Limit: 30 Sec Memory Limit: 512 MB
Submit: 588 Solved: 309
[Submit][Status][Discuss]
Description
已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对。
Input
Output
输出文件第一行为一个整数,表示第 K 远点对的距离的平方(一定是个整数)。
Sample Input
0 0
0 1
1 0
1 1
2 0
2 1
1 2
0 2
3 0
3 1
Sample Output
【题解】
第K远点对。是说C(N,2)个点对里面。点对之间的距离是第K远的。求这个距离。
我们枚举每个点。然后查看它与其他点的距离。
维护一个1..2*K远的队列。然后不断更新这个队列
(为什么是2*k,想想我们在枚举第一个点的时候,假如和第3个点配对,距离为第2远那么下次再枚举第3个点的时候还会遇到第一个点。又出现了一个第2远的数要加入到队列中。而这两个距离其实是同一个点对的。即排列。考虑其他第1,3,4,..k远的点对也会出现这种情况。我们就把K变成2*K。);
【代码】
#include <cstdio>
#include <algorithm> using namespace std; const int MAX_N = 109000; int n, k,root,now;
long long duilie[300]; struct point
{
long long d[2], mi_n[2], ma_x[2] ;
int l,r;
}; point t[MAX_N],op; void input_data()
{
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++)
scanf("%lld%lld", &t[i].d[0], &t[i].d[1]);
} bool cmp(point a, point b)
{
return a.d[now] < b.d[now];
} void up_data(int rt)
{
int l = t[rt].l, r = t[rt].r;
for (int i = 0; i <= 1; i++)
{
if (l)
{
t[rt].ma_x[i] = max(t[rt].ma_x[i], t[l].ma_x[i]);
t[rt].mi_n[i] = min(t[rt].mi_n[i], t[l].mi_n[i]);
}
if (r)
{
t[rt].ma_x[i] = max(t[rt].ma_x[i], t[r].ma_x[i]);
t[rt].mi_n[i] = min(t[rt].mi_n[i], t[r].mi_n[i]);
}
}
} int build(int begin, int end, int fx)
{
int m = (begin + end) >> 1;
now = fx;
nth_element(t + begin, t + m, t + end + 1, cmp);
for (int i = 0; i <= 1; i++)
t[m].ma_x[i] = t[m].mi_n[i] = t[m].d[i];
if (begin < m)
t[m].l = build(begin, m - 1, 1 - fx);
if (m < end)
t[m].r = build(m + 1, end, 1 - fx);
up_data(m);
return m;
} long long sqr(long long x)
{
return x*x;
} long long get_dis(int rt)
{
return sqr(t[rt].d[0] - op.d[0]) + sqr(t[rt].d[1] - op.d[1]);
} long long gujia(int rt)//估价函数
{
long long temp = 0;
for (int i = 0; i <= 1; i++)
temp += max(sqr(t[rt].mi_n[i] - op.d[i]), sqr(t[rt].ma_x[i] - op.d[i]));
return temp;
} void query(int rt)
{
long long dis = get_dis(rt);
int k_th = k;
while (duilie[k_th] <= dis)//找到这个距离在队列中的合适位置。
{
k_th--;
if (!k_th)
break;
}
if (k_th != k)
{
for (int i = k; i >= k_th + 2; i--)
duilie[i] = duilie[i - 1];//这个位置后面的数字往后挪。
duilie[k_th + 1] = dis;
}
int l = t[rt].l, r = t[rt].r;
long long gl = -1,gr = -1;
if (l)
gl = gujia(l);
if (r)
gr = gujia(r);
if (gl < gr)
{
if (gr >= duilie[k])
query(r);
if (gl >= duilie[k])
query(l);
}
else
{
if (gl >= duilie[k])
query(l);
if (gr >= duilie[k])
query(r);
}
} void get_ans()
{
root = build(1, n, 0);
k = k * 2;//直接求2*k远
for (int i = 1; i <= k; i++)//duilie[1..k]分别表示第1,2,3..远。因此它是递减队列。
duilie[i] = 0;
for (int i = 1; i <= n; i++)
{
op.d[0] = t[i].d[0], op.d[1] = t[i].d[1];
query(root);
}
} void output_ans()
{
printf("%lld\n", duilie[k]);
} int main()
{
//freopen("F:\\rush.txt", "r", stdin);
input_data();
get_ans();
output_ans();
return 0;
}
【52.55%】【BZOJ 4520】K远点对的更多相关文章
- BZOJ - 4520 K远点对
题意:已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对 维护大小为2k最小堆,KD树的估值用前面提到的做法 PS.网上有人估价是使用边界四个点的最值来独立枚举,然而这样写似乎过不了 #incl ...
- BZOJ 4520: [Cqoi2016]K远点对
4520: [Cqoi2016]K远点对 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 638 Solved: 340[Submit][Status ...
- BZOJ 4520 [Cqoi2016]K远点对(KD树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4520 [题目大意] 求K远点对距离 [题解] 修改估价函数为欧式上界估价,对每个点进行 ...
- BZOJ 4520: [Cqoi2016]K远点对(k-d tree)
Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1162 Solved: 618[Submit][Status][Discuss] Descripti ...
- BZOJ 4520: [Cqoi2016]K远点对 KDtree + 估价函数 + 堆
Code: #include<bits/stdc++.h> #define ll long long #define maxn 200000 #define inf 10000000000 ...
- [Cqoi2016]K远点对 K-Dtree
4520: [Cqoi2016]K远点对 链接 bzoj 思路 用K-Dtree求点的最远距离. 求的时候顺便维护一个大小为2k的小根堆. 不知道为啥一定会对. 代码 #include <bit ...
- 【BZOJ-4520】K远点对 KD-Tree + 堆
4520: [Cqoi2016]K远点对 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 490 Solved: 237[Submit][Status ...
- 【bzoj4520】 Cqoi2016—K远点对
http://www.lydsy.com/JudgeOnline/problem.php?id=4520 (题目链接) 题意 求平面内第K远点对的距离. Solution 左转题解:jump 细节 刚 ...
- 【BZOJ4520】K远点对(KD-Tree)
[BZOJ4520]K远点对(KD-Tree) 题面 BZOJ 洛谷 题解 考虑暴力. 维护一个大小为\(K\)的小根堆,然后每次把两个点之间的距离插进去,然后弹出堆顶 这样子可以用\(KD-Tree ...
随机推荐
- Directx11教程(31) 纹理映射(1)
原文:Directx11教程(31) 纹理映射(1) 在前面的例子中,我们要么是直接给顶点赋颜色值,要么是在顶点属性中设置Diffuse和Specular系数,从而根据光照参数计算得到 ...
- Python之整数类型
整数:18,73,84 每一个整数都有如下的功能:class int(object): """ int(x=0) -> int or long int(x, bas ...
- php7 新内容
1.use增强 以thinkphp5.0为例 namespace app\home\controller;use think\{Loader,Controller,Captcha,Request}; ...
- 《mysql必知必会》笔记1(检索、排序、过滤、计算、汇聚、分组)
一:了解SQL 1:列是表中的字段,所有表都由一个或多个列组成的.行是表中的记录,表中的数据都按行存储. 2:表中每一行都应该有可以唯一标识自己的一列或一组列.主键(一列或一组列),其值能够唯一区分每 ...
- 页面头部<meta>中的属性和含义
1<meta name="robots" content="index, follow" /> none:搜索引擎将忽略此网页,等价于noin ...
- 【NS2】TCL debug (转载)
1.使用NS2进行模拟,就不可避免的会接触TCL/OTCL和C/C++.两者配合使用.一般设置场景啊,业务流啊,都使用TCL/OTCL来编写脚 本.要进行路由实验模拟的话,同一类的实验,这些脚本基本上 ...
- 应用node-webkit(NWJS)把BS架构的网址封装成桌面应用
一.目的 给WEB应用的用户提供一款同一的浏览器,访问固定网址,封装一些常用插件(如flash插件等) 二.步骤 1.下载node-webkit,官方网址https://nwjs.io/ 2.解压下载 ...
- oracle函数 INITCAP(c1)
[功能]返回字符串并将字符串的第一个字母变为大写,其它字母小写; [参数]c1字符型表达式 [返回]字符型 [示例] SQL> select initcap('smith abc aBC') u ...
- maxCompute odps 行转列
select name ,REGEXP_REPLACE(str,"[\\[\"\\]]",'') from ( select trans_array(, ",& ...
- [ Laravel 5.1 文档 ] 服务 —— 帮助函数
http://laravelacademy.org/post/205.html 1.简介 Laravel自带了一系列PHP帮助函数,很多被框架自身使用,然而,如果你觉得方便的话也可以在应用中随心所欲的 ...