清理图片,对图片进行二值化,去边框,去干扰线,去点

from PIL import Image
from pytesseract import *
from fnmatch import fnmatch
from queue import Queue
import matplotlib.pyplot as plt
import cv2
import time
import os def clear_border(img,img_name):
'''去除边框
''' h, w = img.shape[:2]
for y in range(0, w):
for x in range(0, h):
# if y ==0 or y == w -1 or y == w - 2:
if y < 4 or y > w -4:
img[x, y] = 255
# if x == 0 or x == h - 1 or x == h - 2:
if x < 4 or x > h - 4:
img[x, y] = 255 return img def interference_line(img, img_name):
'''
干扰线降噪
''' h, w = img.shape[:2]
# !!!opencv矩阵点是反的
# img[1,2] 1:图片的高度,2:图片的宽度
for r in range(0,2):
for y in range(1, w - 1):
for x in range(1, h - 1):
count = 0
if img[x, y - 1] > 245:
count = count + 1
if img[x, y + 1] > 245:
count = count + 1
if img[x - 1, y] > 245:
count = count + 1
if img[x + 1, y] > 245:
count = count + 1
if count > 2:
img[x, y] = 255 return img def interference_point(img,img_name, x = 0, y = 0):
"""点降噪
9邻域框,以当前点为中心的田字框,黑点个数
:param x:
:param y:
:return:
"""
# todo 判断图片的长宽度下限
cur_pixel = img[x,y]# 当前像素点的值
height,width = img.shape[:2] for y in range(0, width - 1):
for x in range(0, height - 1):
if y == 0: # 第一行
if x == 0: # 左上顶点,4邻域
# 中心点旁边3个点
sum = int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 2 * 245:
img[x, y] = 0
elif x == height - 1: # 右上顶点
sum = int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1])
if sum <= 2 * 245:
img[x, y] = 0
else: # 最上非顶点,6邻域
sum = int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
elif y == width - 1: # 最下面一行
if x == 0: # 左下顶点
# 中心点旁边3个点
sum = int(cur_pixel) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x, y - 1])
if sum <= 2 * 245:
img[x, y] = 0
elif x == height - 1: # 右下顶点
sum = int(cur_pixel) \
+ int(img[x, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y - 1]) if sum <= 2 * 245:
img[x, y] = 0
else: # 最下非顶点,6邻域
sum = int(cur_pixel) \
+ int(img[x - 1, y]) \
+ int(img[x + 1, y]) \
+ int(img[x, y - 1]) \
+ int(img[x - 1, y - 1]) \
+ int(img[x + 1, y - 1])
if sum <= 3 * 245:
img[x, y] = 0
else: # y不在边界
if x == 0: # 左边非顶点
sum = int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1]) if sum <= 3 * 245:
img[x, y] = 0
elif x == height - 1: # 右边非顶点
sum = int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x - 1, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) if sum <= 3 * 245:
img[x, y] = 0
else: # 具备9领域条件的
sum = int(img[x - 1, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) \
+ int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 4 * 245:
img[x, y] = 0 return img def _get_dynamic_binary_image(filedir,img_name):
'''
自适应阀值二值化
'''
filename = './easy_code/' + img_name.split('.')[0] + '-binary.jpg'
img_name = filedir + '/' + img_name
im = cv2.imread(img_name)
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1) return th1 def recognize():  
filedir = './images'  #验证码路径 for file in os.listdir(filedir):
if fnmatch(file, '*.jpg'):
img_name = file
# 自适应阈值二值化
im = _get_dynamic_binary_image(filedir,img_name)
# 去除边框
im = clear_border(im,img_name)
# 对图片进行干扰线降噪
im = interference_line(im,img_name)
# 对图片进行点降噪
im = interference_point(im,img_name)
filename = './easy_code/' + img_name.split('.')[0] + '-interferencePoint.jpg'  #easy_code为保存路径
cv2.imwrite(filename,im)  #保存图片 recognize()

以上代码改自 老板丶鱼丸粗面 的 《python验证码识别》对于验证码识别大佬那还有跟详细的介绍。

附链接:https://www.cnblogs.com/qqandfqr/p/7866650.html

Python爬虫笔记【一】模拟用户访问之验证码清理(4)的更多相关文章

  1. python爬虫笔记之用cookie访问需要登录的网站

     目标:用cookie访问一个需要登录的网站 如图,直接访问会跳转到登录页面,提示登录. 运行结果: 直接在浏览器上输入该url,网站立马跳转到登录页面.  方法: 1.先手动登录,通过抓包获取coo ...

  2. Python爬虫笔记【一】模拟用户访问之设置请求头 (1)

    学习的课本为<python网络数据采集>,大部分代码来此此书. 网络爬虫爬取数据首先就是要有爬取的权限,没有爬取的权限再好的代码也不能运行.所以首先要伪装自己的爬虫,让爬虫不像爬虫而是像人 ...

  3. python爬虫笔记Day01

    python爬虫笔记第一天 Requests库的安装 先在cmd中pip install requests 再打开Python IDM写入import requests 完成requests在.py文 ...

  4. [Python爬虫笔记][随意找个博客入门(一)]

    [Python爬虫笔记][随意找个博客入门(一)] 标签(空格分隔): Python 爬虫 2016年暑假 来源博客:挣脱不足与蒙昧 1.简单的爬取特定url的html代码 import urllib ...

  5. Python爬虫笔记一(来自MOOC) Requests库入门

    Python爬虫笔记一(来自MOOC) 提示:本文是我在中国大学MOOC里面自学以及敲的一部分代码,纯一个记录文,如果刚好有人也是看的这个课,方便搬运在自己电脑上运行. 课程为:北京理工大学-嵩天-P ...

  6. Python之路,Day22 - 网站用户访问质量分析监测分析项目开发

    Python之路,Day22 - 网站用户访问质量分析监测分析项目开发   做此项目前请先阅读 http://3060674.blog.51cto.com/3050674/1439129  项目实战之 ...

  7. Python爬虫笔记(一):爬虫基本入门

    最近在做一个项目,这个项目需要使用网络爬虫从特定网站上爬取数据,于是乎,我打算写一个爬虫系列的文章,与大家分享如何编写一个爬虫.这是这个项目的第一篇文章,这次就简单介绍一下Python爬虫,后面根据项 ...

  8. 《转载》python爬虫实践之模拟登录

    有些网站设置了权限,只有在登录了之后才能爬取网站的内容,如何模拟登录,目前的方法主要是利用浏览器cookie模拟登录.   浏览器访问服务器的过程   在用户访问网页时,不论是通过URL输入域名或IP ...

  9. Python 爬虫实战5 模拟登录淘宝并获取所有订单

    经过多次尝试,模拟登录淘宝终于成功了,实在是不容易,淘宝的登录加密和验证太复杂了,煞费苦心,在此写出来和大家一起分享,希望大家支持. 本篇内容 python模拟登录淘宝网页 获取登录用户的所有订单详情 ...

随机推荐

  1. 编译报错 :The method list(String, Object[]) is ambiguous for the type BaseHibernateDao<M,PK>

    原因:eclipse 的个bug,具体见http://stackoverflow.com/questions/10852923/method-is-ambiguous-for-the-type-but ...

  2. 工作记录--WPF自定义控件,实现一个可设置编辑模式的TextBox

    原文:工作记录--WPF自定义控件,实现一个可设置编辑模式的TextBox 1. 背景 因为最近在使用wpf开发桌面端应用,在查看页面需要把TextBox和Combox等控件设置为只读的.原本是个很简 ...

  3. Slim模型部署多GPU

    1 多GPU原理 单GPU时,思路很简单,前向.后向都在一个GPU上进行,模型参数更新时只涉及一个GPU. 多GPU时,有模型并行和数据并行两种情况. 模型并行指模型的不同部分在不同GPU上运行. 数 ...

  4. 2019-10-4-C#-极限压缩-dotnet-core-控制台发布文件

    title author date CreateTime categories C# 极限压缩 dotnet core 控制台发布文件 lindexi 2019-10-04 14:59:36 +080 ...

  5. 2018-8-10-VisualStudio-2017-项目格式-自动生成版本号

    title author date CreateTime categories VisualStudio 2017 项目格式 自动生成版本号 lindexi 2018-08-10 19:16:52 + ...

  6. Luogu P1039 侦探推理(模拟+枚举)

    P1039 侦探推理 题意 题目描述 明明同学最近迷上了侦探漫画<柯南>并沉醉于推理游戏之中,于是他召集了一群同学玩推理游戏.游戏的内容是这样的,明明的同学们先商量好由其中的一个人充当罪犯 ...

  7. day1-初识Python以及环境搭建

    ---恢复内容开始--- 为什么学习Python? 软件质量:python的可读性很强,易于理解,非常接近于人类的自然语言. 提高开发者效率:相当于C,C++和JAVA等编译/静态型语言,Python ...

  8. iOS开发本地推送(iOS10)UNUserNotificationCenter

    1.简介 iOS10之后苹果对推送进行了封装,UNUserNotificationCenter就这样产生了.简单介绍本地推送的使用UserNotifications官方文档说明! 2.简单使用UNUs ...

  9. 转:linux中select()函数分析

    源地址:http://blog.csdn.net/zi_jin/article/details/4214359 Select在Socket编程中还是比较重要的,可是对于初学Socket的人来说都不太爱 ...

  10. 基于neighborhood models(item-based) 的个性化推荐系统

    文章主要介绍的是koren 08年发的论文[1],  2.2neighborhood models部分内容(其余部分会陆续补充上来). koren论文中用到netflix 数据集, 过于大, 在普通的 ...