FFT(快速傅立叶变换)使用“分而治之”的策略来计算一个n阶多项式的n阶DFT系数的值。定义n为2的整数幂数,为了计算一个n阶多项式f(x),算法定义了连个新的n/2阶多项式,函数f[0](x)包含了f(x)中的x偶次幂项,函数f[1](x)f(x)中的x奇次幂项。

f[0]=a0+a2x+a4x2+ ...+an-2xn/2-1

f[1]=a1+a3x+a5x2+ ...+an-1xn/2-1

则f(x) = f[0](x2)+ xf[1](x2),因此wn0,wn1,...wnn-1点计算f(x)的值得问题转化成计算f[0]和f[1]在(wn0)2,(wn1)2,...(wnn-1)2点的问题,然后计算f(x) = f[0](x2)+ xf[1](x2)。

FFT Code:

#include "stdio.h"
#include "math.h" #define LENGTH 4
#define PI 3.1415926 typedef struct Complex
{
float real;
float img;
}Complex; void Recursive_FFT(float *a,Complex *y,int len);
Complex Mul(Complex w,Complex y1_var);
Complex Add(Complex y0_var,int op,Complex mul_result ); int main()
{
float a[LENGTH] = {,,,}; Complex f[LENGTH];
Recursive_FFT(a,f,LENGTH); int i;
for(i=;i<LENGTH;i++)
{
if(f[i].real !=)
{
printf("%3.1f",f[i].real);
}
if(f[i].img !=)
{
printf("+%3.1fi",f[i].img);
}
printf("\n");
}
} //递归求解,a为输入的初始矩阵,y为计算出来的频率矩阵
void Recursive_FFT(float *a,Complex *y,int len)
{
Complex w0,wn;
Complex y0[len/],y1[len/]; w0.real = 1.0;
w0.img = 0.0; wn.real = cos(- * PI /(float) len);
wn.img = sin(- * PI / (float) len); float a0[len/];
float a1[len/];
int count_a0 = ;
int count_a1 = ; int i;
if(len == )
{
y[].real = a[];
y[].img = ;
}
else
{
for(i=;i<len;i++)
{
if(i % )
{
a0[count_a0++] = a[i];
}
else
{
a1[count_a1++] = a[i];
}
} Recursive_FFT(a0,y0,len/);
Recursive_FFT(a1,y1,len/); int k;
Complex w = w0;;
for(k=;k<len/;k++)
{
y[k] = Add(y0[k],,Mul(w,y1[k]));
y[k+len/] = Add(y0[k],-,Mul(w,y1[k]));
w = Mul(w,wn);
}
} } //乘法运算
Complex Mul(Complex w,Complex y1_var)
{
Complex result;
result.real = w.real * y1_var.real - w.img * y1_var.img;
result.img = w.real * y1_var.img + w.img * y1_var.real;
return result;
}

//op为1则为加法运算,-1为减法运算
Complex Add(Complex y0_var,int op,Complex mul_result )
{
Complex result;
if(op == )
{
result.real = y0_var.real + mul_result.real;
result.img = y0_var.img + mul_result.img;
}
else
{
result.real = y0_var.real - mul_result.real;
result.img = y0_var.img - mul_result.img;
} return result;
}

时间复杂度:O(n*logn)。

傅立叶变换—FFT的更多相关文章

  1. 快速傅立叶变换(FFT)算法

    已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...

  2. TOT 傅立叶变换 FFT 入门

    HDU 1402,计算很大的两个数相乘. FFT 只要78ms,这里: 一些FFT 入门资料:http://wenku.baidu.com/view/8bfb0bd476a20029bd642d85. ...

  3. 快速傅立叶变换FFT模板

    递归版 UOJ34多项式乘法 //容易暴栈,但是很好理解 #include <cmath> #include <iostream> #include <cstdio> ...

  4. 傅立叶变换—FFT(cuda实现)

    背景: 无意间看到cuda解决FFT有一个cufft函数库,大体查看了有关cufft有关知识,写了一个解决一维情况的cuda代码,据调查知道cufft在解决1D,2D,3D的情况时间复杂度都为O(nl ...

  5. 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

    写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...

  6. Matlab图像处理系列4———傅立叶变换和反变换的图像

    注意:这一系列实验的图像处理程序,使用Matlab实现最重要的图像处理算法 1.Fourier兑换 (1)频域增强 除了在空间域内能够加工处理图像以外,我们还能够将图像变换到其它空间后进行处理.这些方 ...

  7. Matlab图像处理系列4———图像傅立叶变换与反变换

    注:本系列来自于图像处理课程实验.用Matlab实现最主要的图像处理算法 1.Fourier变换 (1)频域增强 除了在空间域内能够加工处理图像以外.我们还能够将图像变换到其它空间后进行处理.这些方法 ...

  8. 离散傅立叶变换与快速傅立叶变换(DFT与FFT)

    自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...

  9. $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换

    \(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...

随机推荐

  1. Laravel 5.3 用户验证源码探究 (一) 路由与注册

    https://blog.csdn.net/realghost/article/details/52558962 简介 Laravel 从 5.2 开始就有了开箱即用的用户验证,5.3 又在 5.2 ...

  2. JavaScript跨域问题

    通过实现Ajax通信的主要限制,来源于跨域安全策略.默认情况下,XHR对象只能访问与包含它的页面位于同一个域中的资源.这种安全策略可以预防某些恶意行为.但是,实现合理的跨域请求对于开发某些浏览器应用程 ...

  3. 2001年NOIP普及组复赛题解

    题目涉及算法: 数的计算:动态规划: 最大公约数和最小公倍数问题:质因数分解: 求先序排列:递归: 装箱问题:动态规划(纯0-1背包问题) 数的计算 题目链接:https://www.luogu.or ...

  4. java基本数据类型转换之向上转型和向下转换

    向上转换: 整型,字符型,浮点型的数据在混合运算中相互转换,转换时遵循以下原则: 容量小的类型可自动转换为容量大的数据类型: byte,short,char → int → long → float ...

  5. 使用java实现CNN的实战

    使用java实现CNN的实战 1.要实现CNN,其中包括 卷积.池化(下采样).分类器.优化方法.分类器.反向传播 2.可以使用一个三维数组来表示一张图片(通道.行.列) 3.卷积,卷积的方式有三种: ...

  6. Vue的路由Router之导航钩子和元数据及匹配

    一.文件结构 二.vue.js 打开此链接 https://cdn.bootcss.com/vue/2.6.10/vue.js 复制粘贴页面的所有内容 三.vue-router.js 打开此链接  h ...

  7. JOISC2014 挂饰("01"背包)

    传送门: [1]:洛谷 [2]:BZOJ 参考资料: [1]:追忆:往昔 •题解 上述参考资料的讲解清晰易懂,下面谈谈我的理解: 关键语句: 将此题转化为 "01背包" 类问题,关 ...

  8. H3C 子网划分方法

  9. 2019-9-24-dotnet-remoting-抛出异常

    title author date CreateTime categories dotnet remoting 抛出异常 lindexi 2019-09-24 15:39:50 +0800 2018- ...

  10. Linux 内核引用计数的操作

    一个 kobject 的其中一个关键函数是作为一个引用计数器, 给一个它被嵌入的对象. 只 要对这个对象的引用存在, 这个对象( 和支持它的代码) 必须继续存在. 来操作一个 kobject 的引用计 ...