Yolo V3理解bbox和label的关系
假如一个bbox坐标为:[35 220 62 293 3]
第一步:将bbox转换为中心坐标和宽高形式(3种缩放比例进行缩放)
那么onehot:[0 0 0 1 0 0 0 0 0 0 ........],当然还可以平滑
计算bbox的中心坐标和宽高(35+62)/2 = 48.5 (220+293)/2=256.5 宽高为62-35 = 27 293-220=73
所以bbox的宽高中心坐标为(48.5 256.5 27 73)
然后根据缩放比例(8 16 32)进行缩放
缩放后的3组坐标为[[6.0625 32.0625 3.375 9.125][3.03 16.03 1.68 4.56][1.51 8.01 0.84 2.28]]
第二步:anchors中心和宽高获取
anchors的中心坐标和宽高总共3组每个缩放比例为8 :[[6.5 32.5 1.25 1.625][6.5 32.5 2 3.75][6.5 32.5 4.125 2.875]]
缩放比例为16:[[3.5 16.5 1.875 3.8125][3.5 16.5 3.875 2.8125][3.5 16.5 3.6875 7.4375]]
缩放比例为32:[[1.5 8.5 3.625 2.8125][1.5 8.5 4.875 6.1875][1.5 8.5 11.65625 10.1875]]
其中中心坐标为bbox的取整坐标加0.5,宽高坐标为kmeans聚类出来的
然后bbox的3组坐标分别和anchors的3组坐标计算iou
3组不同比例缩放的bbox对应3组anchors找到iou>0.3的并将网格的左上角坐标标记下来。
label格式为[np.zeros((train_output_sizes[i], train_output_sizes[i], anchor_per_scale,5 + num_classes)) for i in range(3)]
那么label i= [1,2,3]代表3种尺度:
label[i][yind, xind, iou_mask, :] = 0
label[i][yind, xind, iou_mask, 0:4] = bbox_xywh
label[i][yind, xind, iou_mask, 4:5] = 1.0
label[i][yind, xind, iou_mask, 5:] = smooth_onehot
Yolo V3理解bbox和label的关系的更多相关文章
- Pytorch从0开始实现YOLO V3指南 part1——理解YOLO的工作
本教程翻译自https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/ 视频展示:https://w ...
- 深度学习笔记(十三)YOLO V3 (Tensorflow)
[代码剖析] 推荐阅读! SSD 学习笔记 之前看了一遍 YOLO V3 的论文,写的挺有意思的,尴尬的是,我这鱼的记忆,看完就忘了 于是只能借助于代码,再看一遍细节了. 源码目录总览 tens ...
- Yolo V3整体思路流程详解!
结合开源项目tensorflow-yolov3(https://link.zhihu.com/?target=https%3A//github.com/YunYang1994/tensorflow-y ...
- 一文看懂YOLO v3
论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf论文:YOLOv3: An Incremental Improvement YOLO系列的 ...
- YOLO v3算法介绍
图片来自https://towardsdatascience.com/yolo-v3-object-detection-with-keras-461d2cfccef6 数据前处理 输入的图片维数:(4 ...
- YOLO系列:YOLO v3解析
本文好多内容转载自 https://blog.csdn.net/leviopku/article/details/82660381 yolo_v3 提供替换backbone.要想性能牛叉,backbo ...
- (转载)YOLO配置文件理解
YOLO配置文件理解 转载自 [net] batch=64 每batch个样本更新一次参数. subdivisions=8 如果内存不够大,将batch分割为subdivisions个子batch,每 ...
- YOLO V3 原理
基本思想V1: 将输入图像分成S*S个格子,每隔格子负责预测中心在此格子中的物体. 每个格子预测B个bounding box及其置信度(confidence score),以及C个类别概率. bbox ...
- Pytorch从0开始实现YOLO V3指南 part5——设计输入和输出的流程
本节翻译自:https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch ...
随机推荐
- lrj 9.2.3
<<); // 记忆化搜索 min[] = ; int dp(int i) { ) return maxv[i]; maxv[i] = -INF; ; j <= n; j++) if ...
- HDU 2191多重背包问题、
#include<cstdio> #include<cmath> #include<iostream> #include<cstring> +; int ...
- Django使用cors解决跨域问题
1.安装Django-cors-headers模块 pip install django-cors-headers 2.配置settings.py文件 INSTALLED_APPS = [ ... ' ...
- ElasticSearch从不懂到会用1—安装篇
连续加班近一个多月,项目终于告一段落了,也腾出时间写一写项目中用到的东西.在这个项目中,我负责的主要是多种业务场景下的数据查询和搜索,其中搜索用到了ElasticSearch搜索引擎.下面主要围绕El ...
- webpack优化 -- compression-webpack-plugin 开启gzip
webpack优化 -- compression-webpack-plugin 开启gzip 打包的时候开启gzip可以大大减少体积,非常适合于上线部署.下面以vue-cli2.x项目为例,介绍如何在 ...
- 安装 Sureface Hub 系统 Windows 10 team PPIPro 系统
本文告诉大家如何安装这个系统 本文的方法我自己没试过,如果失败了,不要打我 下载地址 中文版 https://pan.baidu.com/s/1gAJSSE6KB9JHXo4BT_VfmA 其他请看 ...
- The Function() Constructor
Functions are usually defined using the function keyword, either in the form of a function definitio ...
- tensorflow在文本处理中的使用——skip-gram & CBOW原理总结
摘自:http://www.cnblogs.com/pinard/p/7160330.html 先看下列三篇,再理解此篇会更容易些(个人意见) skip-gram,CBOW,Word2Vec 词向量基 ...
- 一排盒子,jq鼠标移入的盒子动画移出停止动画,css动画
css .category > div.active { animation: servicetobig 0.5s ease 1 forwards; } @keyframes serviceto ...
- Linux 内核USB 接口配置
USB 接口是自己被捆绑到配置的. 一个 USB 设备可有多个配置并且可能在它们之间转换 以便改变设备的状态. 例如, 一些允许固件被下载到它们的设备包含多个配置来实现这个. 一个配置只能在一个时间点 ...