Yolo V3理解bbox和label的关系
假如一个bbox坐标为:[35 220 62 293 3]
第一步:将bbox转换为中心坐标和宽高形式(3种缩放比例进行缩放)
那么onehot:[0 0 0 1 0 0 0 0 0 0 ........],当然还可以平滑
计算bbox的中心坐标和宽高(35+62)/2 = 48.5 (220+293)/2=256.5 宽高为62-35 = 27 293-220=73
所以bbox的宽高中心坐标为(48.5 256.5 27 73)
然后根据缩放比例(8 16 32)进行缩放
缩放后的3组坐标为[[6.0625 32.0625 3.375 9.125][3.03 16.03 1.68 4.56][1.51 8.01 0.84 2.28]]
第二步:anchors中心和宽高获取
anchors的中心坐标和宽高总共3组每个缩放比例为8 :[[6.5 32.5 1.25 1.625][6.5 32.5 2 3.75][6.5 32.5 4.125 2.875]]
缩放比例为16:[[3.5 16.5 1.875 3.8125][3.5 16.5 3.875 2.8125][3.5 16.5 3.6875 7.4375]]
缩放比例为32:[[1.5 8.5 3.625 2.8125][1.5 8.5 4.875 6.1875][1.5 8.5 11.65625 10.1875]]
其中中心坐标为bbox的取整坐标加0.5,宽高坐标为kmeans聚类出来的
然后bbox的3组坐标分别和anchors的3组坐标计算iou
3组不同比例缩放的bbox对应3组anchors找到iou>0.3的并将网格的左上角坐标标记下来。
label格式为[np.zeros((train_output_sizes[i], train_output_sizes[i], anchor_per_scale,5 + num_classes)) for i in range(3)]
那么label i= [1,2,3]代表3种尺度:
label[i][yind, xind, iou_mask, :] = 0
label[i][yind, xind, iou_mask, 0:4] = bbox_xywh
label[i][yind, xind, iou_mask, 4:5] = 1.0
label[i][yind, xind, iou_mask, 5:] = smooth_onehot
Yolo V3理解bbox和label的关系的更多相关文章
- Pytorch从0开始实现YOLO V3指南 part1——理解YOLO的工作
本教程翻译自https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/ 视频展示:https://w ...
- 深度学习笔记(十三)YOLO V3 (Tensorflow)
[代码剖析] 推荐阅读! SSD 学习笔记 之前看了一遍 YOLO V3 的论文,写的挺有意思的,尴尬的是,我这鱼的记忆,看完就忘了 于是只能借助于代码,再看一遍细节了. 源码目录总览 tens ...
- Yolo V3整体思路流程详解!
结合开源项目tensorflow-yolov3(https://link.zhihu.com/?target=https%3A//github.com/YunYang1994/tensorflow-y ...
- 一文看懂YOLO v3
论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf论文:YOLOv3: An Incremental Improvement YOLO系列的 ...
- YOLO v3算法介绍
图片来自https://towardsdatascience.com/yolo-v3-object-detection-with-keras-461d2cfccef6 数据前处理 输入的图片维数:(4 ...
- YOLO系列:YOLO v3解析
本文好多内容转载自 https://blog.csdn.net/leviopku/article/details/82660381 yolo_v3 提供替换backbone.要想性能牛叉,backbo ...
- (转载)YOLO配置文件理解
YOLO配置文件理解 转载自 [net] batch=64 每batch个样本更新一次参数. subdivisions=8 如果内存不够大,将batch分割为subdivisions个子batch,每 ...
- YOLO V3 原理
基本思想V1: 将输入图像分成S*S个格子,每隔格子负责预测中心在此格子中的物体. 每个格子预测B个bounding box及其置信度(confidence score),以及C个类别概率. bbox ...
- Pytorch从0开始实现YOLO V3指南 part5——设计输入和输出的流程
本节翻译自:https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch ...
随机推荐
- mybatis 嵌套查询与懒加载
懒加载:对于页面有很多静态资源的情况下(比如网商购物页面),为了节省用户流量和提高页面性能,可以在用户浏览到当前资源的时候,再对资源进行请求和加载. fetchType="lazy" ...
- window10+python3.7安装tensorflow--gpu tensorflow 安装
能安装GPU的前提是:1.显卡支持CUDA (1)右击我的电脑–属性 (2)打开设备管理器 (3)显示适配器 我的电脑是支持CUDA的 2.pip 版本 >= 8.1查看pip版本 :pip ...
- IDEA中安装activiti并使用
1.IDEA中本身不带activiti,需要自己安装下载. 打开IDEA中File列表下的Settings 输入actiBPM,然后点击下面的Search...搜索 点击Install 下载 下载结束 ...
- H3C 配置PAP验证
- CentOS7 network.service loaded failed 处理技巧
某一日,用systemctl --failed查看到如下错误信息,但实际上网络是OK的,真奇怪: 1 2 3 4 5 6 7 8 [root@localhost.localdomain media]# ...
- js利用select标签生成简易计算功能
html中使用select option作为运算符的承接容器,输入值,选择不同运算符,计算结果. 文章地址 https://www.cnblogs.com/sandraryan/ <!DOCTY ...
- [转]什么是CNN、RNN、LSTM
. 全连层 每个神经元输入: 每个神经元输出: (通过一个激活函数) 2. RNN(Recurrent Neural Network) 与传统的神经网络不通,RNN与时间有关. 3. LSTM(Lon ...
- 4-10 items设计
1,items相当于dict,但是又比字典好 2,parse.urljoin(response.url,post_url)方法,其中image_url是一个域名的话,其中的当前域名就不用再添加. yi ...
- python基础十四之匿名函数
匿名函数 处理简单问题的简化函数,关键字lambda. # 格式:函数名 = lambda 参数:返回值 anonymity = lambda s: s ** 0.5 print(anonymity( ...
- http header详解,HTTP头、请求头、响应头、实体头
Content-Language,Content-Length,Content-Type,Content-Encoding,mime分析 Accept 指定客户端能够接收的内容类型 Accept:te ...