(有种失踪人口回归的感觉)

约束研究【传送门】

(不过好像没有人注意到我这个蒟蒻)

好的不管它啦

最近学数论比较多,所以可能会有好多好多的数论题???(不存在的)

行吧上算法标签:


数论   数论   数论

首先显然它求的是Σψ(i)i∈(1,n)下面补充关于ψ(i)的百度百科知识(或许有些奇怪……):

行吧那个长得像裤子的东西是求积(和西格玛差不多吧??)

接下来讲一下原理:

我们可以反过来考虑,显然如果分别求1-n中每个数的正约数个数,我们会炸掉的(tle喽),所以我们就反向思维,对于每个数i,1-n中都会有i,2i,3i,4i,……[n/i]*i([n/i]向下取整)个不同的因数,那么1-n中为i的个数的数就为n/i(向下取整)个,依据此,我们可以写出循环:

    for(int i=;i<=n;i++)
ans+=n/i;

依次判断1-n有几个因数……好像没表达清楚(不管了详情见信息学奥赛一本通提高篇p382.4)

附ac代码:

#include<iostream>
using namespace std;
int n,ans;
int main()
{
cin>>n;
for(int i=;i<=n;i++)
ans+=n/i;
cout<<ans<<endl;
}

(悄咪咪的附个链接【来自大佬(喜欢打半括号

end-

【洛谷p1403 】【AHOI2005】约数研究的更多相关文章

  1. 洛谷——P1403 [AHOI2005]约数研究

    P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工 ...

  2. 洛谷P1403 [AHOI2005] 约数研究 [数论分块]

    题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩, ...

  3. 洛谷 P1403 [AHOI2005]约数研究

    怎么会有这么水的省选题 一定是个签到题. 好歹它也是个省选题,独立做出要纪念一下 很容易发现在1~n中,i的因子数是n / i 那就枚举每一个i然后加起来就OK了 #include<cstdio ...

  4. 【洛谷P1403】约数研究

    题目大意:求\[\sum\limits_{i=1}^n\sum\limits_{d|i}1\] 题解:交换求和顺序即可. \[\sum\limits_{i=1}^n\sum\limits_{d|i}1 ...

  5. P1403 [AHOI2005]约数研究

    原题链接 https://www.luogu.org/problemnew/show/P1403 这个好难啊,求约数和一般的套路就是求1--n所有的约数再一一求和,求约数又要用for循环来判断.... ...

  6. P1403 [AHOI2005]约数研究 题解

    转载luogu某位神犇的题解QAQ 这题重点在于一个公式: f(i)=n/i 至于公式是怎么推出来的,看我解释: 1-n的因子个数,可以看成共含有2因子的数的个数+含有3因子的数的个数……+含有n因子 ...

  7. BZOJ 1968_P1403 [AHOI2005]约数研究--p2260bzoj2956-模积和∑----信息学中的数论分块

    第一部分 P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一 ...

  8. LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)

    LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...

  9. 洛谷P2054 [AHOI2005]洗牌(扩展欧几里德)

    洛谷题目传送门 来个正常的有证明的题解 我们不好来表示某时刻某一个位置是哪一张牌,但我们可以表示某时刻某一张牌在哪个位置. 设数列\(\{a_{i_j}\}\)表示\(i\)号牌经过\(j\)次洗牌后 ...

  10. 洛谷P2542 [AHOI2005]航线规划(LCT,双连通分量,并查集)

    洛谷题目传送门 太弱了不会树剖,觉得LCT好写一些,就上LCT乱搞,当LCT维护双连通分量的练手题好了 正序删边是不好来维护连通性的,于是就像水管局长那样离线处理,逆序完成操作 显然,每个点可以代表一 ...

随机推荐

  1. CF1131D tarjan,拓扑

    题目链接 541div2 http://codeforces.com/contest/1131/problem/D 思路 给出n序列和m序列的相对大小关系 构造出最大值最小的序列 缩点+拓扑 小的向大 ...

  2. bzoj 3437 小p的农场

    bzoj 3437 小p的农场 思路 \(f[i]=min(f[j]+\sum\limits_{k=j+1}^{i}{b[k]*(i-k)}+a[i])\) \(f[i]=min(f[j]+\sum\ ...

  3. Maven集成Tomcat插件

    目录 类似插件及版本区别: 本地运行,启动嵌入式tomcat: 错误一: 错误二: Idea运行调试: vscode运行调试: 远程部署: 项目中的pom.xml配置: Tomcat中的tomcat- ...

  4. SpringBoot 通过token进行身份验证,存储redis

    代码: public interface TokenManager { /** * 创建token * @param userInfo * @return */ String getToken(Use ...

  5. java 安装环境

    网上关于win10 jdk安装.配置环境变量的经验有很多,但是按照方法配置后出现了运行javac 报告javac不是内部或外部命令,但是运行java.java-version正常.并不是说那些经验不正 ...

  6. [AtCode 4104] Small and Large Integers

    题目链接:https://abc093.contest.atcoder.jp/tasks/abc093_b?lang=en 这个题虽然很水,但是还是很容易踩坑,比如我,直接想到了[b,a]之间的长度和 ...

  7. (转载)西门子PLC学习笔记十五-(数据块及数据访问方式)

    一.数据块 数据块是在S7 CPU的存储器中定义的,用户可以定义多了数据块,但是CPU对数据块数量及数据总量是有限制的. 数据块与临时数据不同,当逻辑块执行结束或数据块关闭,数据块中的数据是会保留住的 ...

  8. HDU 4918 Query on the subtree(动态点分治+树状数组)

    题意 给定一棵 \(n\) 个节点的树,每个节点有点权.完成 \(q\) 个操作--操作分两种:修改点 \(x\) 的点权.查询与 \(x\) 距离小于等于 \(d\) 的权值总和. \(1 \leq ...

  9. 剥开比原看代码16:比原是如何通过/list-transactions显示交易信息的

    作者:freewind 比原项目仓库: Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchai ...

  10. Python有趣现象(不定时更新)

    1.list中extend方法有趣现象 1.1 List+=Str 与 List.extend(Str) list1 = [11,2,45] str1 = 'Michael' list1.extend ...