Tutorials on Inverse Reinforcement Learning
Tutorials on Inverse Reinforcement Learning
2018-07-22 21:44:39
1. Papers:
- Inverse Reinforcement Learning: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.2178&rep=rep1&type=pdf
- Cooperative Inverse Reinforcement Learning: http://papers.nips.cc/paper/6420-cooperative-inverse-reinforcement-learning.pdf
- Maximum Entropy Deep Inverse Reinforcement Learning: https://arxiv.org/pdf/1507.04888.pdf
2. Video Tutorials:
- Deep RL Bootcamp Lecture 10B Inverse Reinforcement Learning: https://www.youtube.com/watch?v=d9DlQSJQAoI&t=608s
- CVPR18:Tutorial: Inverse Reinforcement Learning for Computer Vision: https://www.youtube.com/watch?v=JbNeLiNnvII&t=41s
- Inverse Reinforcement Learning: https://www.youtube.com/watch?v=O3_t0aNb7qo&t=17s
- DRL Lecture 8: Imitation Learning (李宏毅): https://www.youtube.com/watch?v=rl_ozvqQUU8&t=32s
Will update this blog soon ...
Tutorials on Inverse Reinforcement Learning的更多相关文章
- (zhuan) Deep Reinforcement Learning Papers
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...
- 18 Issues in Current Deep Reinforcement Learning from ZhiHu
深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两 ...
- (zhuan) Paper Collection of Multi-Agent Reinforcement Learning (MARL)
this blog from: https://github.com/LantaoYu/MARL-Papers Paper Collection of Multi-Agent Reinforcemen ...
- Awesome Reinforcement Learning
Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We h ...
- 【资料总结】| Deep Reinforcement Learning 深度强化学习
在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强 ...
- CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning
CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning http://mmlab.ie.c ...
- Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor 20 ...
- Machine Learning Algorithms Study Notes(5)—Reinforcement Learning
Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...
- (转) Playing FPS games with deep reinforcement learning
Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...
随机推荐
- sitecore系列教程之Sitecore个性化-试点开始,测试,优化,增量
这是利用Sitecore的个性化引擎实现数字化转型的三部分系列的第三部分.之前的帖子旨在通过为您的个性化体验定义内容策略并在Sitecore中配置该策略来设置基础. 在此之前,我们讨论了内容策略以 ...
- SVN && BeyondCompare
[1]设置内容 (1)三个步骤对应设置内容 1.1 "D:\Beyond Compare 4\BCompare.exe" %base %mine /title1=%bname /t ...
- B/S开发介绍
b/s 的优势: 1.开发成本低 2.管理维护简单 3.产品升级便利 4.对用户的培训费用低 5.用户使用方便,出现故障的概率小 b/s 的不足: 1.安全性不足 2.客户端不能随心变化,受浏览器限制
- @RefreshScope 的作用
让在application.properties里自定义的变量也能通过@Value 注解正常注入
- FastStone Capture无法录制系统声音解决方法(win10)
步骤一: 右键桌面-->个性化 步骤二: 主题-->高级声音设置 步骤三: 录音-->右键“立体声混音”,单击启用就OK了.
- 计算概论(A)/基础编程练习(数据成分)/1:短信计费
#include<stdio.h> int main() { // 输入当月发送短信的总次数n和每次短信的字数words int n,words; scanf("%d" ...
- ansible中常用模块详解
ansible中常用的模块详解: file模块 ansible内置的可以查看模块用法的命令如下: [root@docker5 ~]# ansible-doc -s file - name: Sets ...
- 在html中引入css、js和jQuery的方法
在html中引入css代码 在html中插入CSS样式表的方法有三种: 1.外部样式表(External style sheet):即所有的样式单独写在一个.css文件中,在html文件的head部分 ...
- python类的__slots__属性、__del__属性、上下文(__enter__和__exit__)、
常规情况下,类的属性字典是共享的,而实例的字典是独立的.如果一个类的属性较少,但是拥有很多的实例,这些实例的属性字典会占用较多的内存空间.对这样的类来说,为了节省内存空间,可以使用__slots__类 ...
- netty支持的各种socketchannel实现及比较
性能上从低到高如下: OioSocketChannel:传统,阻塞式编程. NioSocketChannel:select/poll或者epoll,jdk 7之后linux下会自动选择epoll. E ...