POJ.1830.开关问题(高斯消元 异或方程组)
题目链接
显然我们需要使每个i满足$$( ∑_{j} X[j]A[i][j] ) mod\ 2 = B[i]$$
求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\)
%2可以用^代替,不难看出 B[i]=st[i]^ed[i]
如果X[j]=1,假设j会影响i,那么X[j]A[i][j]这一项应为1,所以A[i][j]应=1 输入别反!
注意A[i][i]=1
将系数矩阵化为上三角形式后,剩下的系数全为0的行数就是自由元的个数;
如果某一行系数全为零,增广矩阵最后一列对应行的值不为0,则无解
//硬是被输入反了坑了半天。。
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=31;
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
struct Gauss
{
int n;
bool A[N][N];
void Init()
{
memset(A,0,sizeof A);
n=read();
for(int i=0; i<n; ++i) A[i][n]=read();
for(int i=0; i<n; ++i) A[i][n]^=read();
for(int i=0; i<n; ++i) A[i][i]=1;
int a,b;
while(a=read(),b=read(),a&&b) A[b-1][a-1]=1;//a,b别反!
}
void Solve()
{
int r=0,c=0;
while(r<n && c<n)
{
int mxrow=r;
for(int i=r+1; i<n; ++i)
if(A[i][c]>A[mxrow][c]) mxrow=i;
if(!A[mxrow][c]) {++c; continue;}
if(mxrow!=r) std::swap(A[r],A[mxrow]);
for(int i=r+1; i<n; ++i)
if(A[i][c])
for(int j=c; j<=n; ++j)
A[i][j]^=A[r][j];
++r, ++c;
}//从r往后的行的矩阵元素都为0
for(int i=r; i<n; ++i)//某一行系数全为0但最后一列不为0
if(A[i][n]) {puts("Oh,it's impossible~!!"); return;}
printf("%d\n",1<<(n-r));
}
}g;
int main()
{
int t=read();
while(t--) g.Init(), g.Solve();
return 0;
}
POJ.1830.开关问题(高斯消元 异或方程组)的更多相关文章
- POJ 1830 开关问题 高斯消元,自由变量个数
http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...
- POJ 1830 开关问题 (高斯消元)
题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...
- POJ 1830 开关问题 [高斯消元XOR]
和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...
- BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)
题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...
- UVA11542 Square(高斯消元 异或方程组)
建立方程组消元,结果为2 ^(自由变元的个数) - 1 采用高斯消元求矩阵的秩 方法一: #include<cstdio> #include<iostream> #includ ...
- Tsinsen-A1488 : 魔法波【高斯消元+异或方程组】
高斯消元. 自己只能想出来把每一个点看成一个变量,用Xi表示其状态,这样必定TLE,n^2 个变量,再加上3次方的高斯消元(当然,可以用bitset压位). 正解如下: 我们把地图划分成一个个的横条和 ...
- UVa 11542 (高斯消元 异或方程组) Square
书上分析的太清楚,我都懒得写题解了.=_=|| #include <cstdio> #include <cstring> #include <cmath> #inc ...
- UVA 11542 Square 高斯消元 异或方程组求解
题目链接:点击打开链接 白书的例题练练手. . . P161 #include <cstdio> #include <iostream> #include <algori ...
- poj1830(高斯消元解mod2方程组)
题目链接:http://poj.org/problem?id=1830 题意:中文题诶- 思路:高斯消元解 mod2 方程组 有 n 个变元,根据给出的条件列 n 个方程组,初始状态和终止状态不同的位 ...
随机推荐
- 同步阿里云镜像到本地,在本地搭建YUM仓库
1.下载阿里云镜像repo文件 项目使用CentOS6系统,因此我下载的文件是: # CentOS-Base.repo # # The mirror system uses the connectin ...
- Linux内存管理3---分页机制
1.前言 本文所述关于内存管理的系列文章主要是对陈莉君老师所讲述的内存管理知识讲座的整理. 本讲座主要分三个主题展开对内存管理进行讲解:内存管理的硬件基础.虚拟地址空间的管理.物理地址空间的管理. 本 ...
- sqlserver2008r2数据库使用触发器对sa及其他数据库账号访问进行IP限制
一.只允许指定IP访问数据库 创建测试账号 CREATE LOGIN testuser WITH PASSWORD = '123' GO CREATE TRIGGER [tr_connection_l ...
- tomcat多项目
在一个tomcat下面布置2个项目 项目的访问路径: http://localhost:8081/ http://localhost:8082/ 1.建立两个站点(虚拟目录,目录中必须包含必要的配置文 ...
- 通过使用CSS字体阴影效果解决hover图片时显示文字看不清的问题
1.前言 最近需要加入一个小功能,在鼠标越过图片时,提示其大小和分辨率,而不想用增加属性title来提醒,不够好看.然而发现如果文字是一种颜色,然后总有概率碰到那张图上浮一层的文字会看不到,所以加入文 ...
- Memcache是谁,它为什么而奋斗?【内容转】
MemCache是什么 MemCache是一个自由.源码开放.高性能.分布式的分布式内存对象缓存系统,用于动态Web应用以减轻数据库的负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高 ...
- 解决Javascript中$(window).resize()多次执行
有些时候,我们需要在浏览器窗口发生变化的时候,动态的执行一些操作,比如做自适应页面时的适配.这个时候,我们需要在窗口拖动的时候去执行代码.但是有些时候,执行的操作比较复杂,我们只希望在窗口拖动完毕之后 ...
- LeetCode(39):组合总和
Medium! 题目描述: 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates ...
- Jquery----属性的利用
属性操作: 1.属性 属性(如果你的选择器选出了多个对象,那么默认只会返回出第一个属性). attr(属性名|属性值) - 一个参数是获取属性的值,两个参数是设置属性值 - 点击加载图片示例 remo ...
- poj2018 二分+线性dp好题
/* 遇到求最值,且答案显然具有单调性,即可用二分答案进行判定 那么本题要求最大的平均数,就可以转换成是否存在一个平均数为mid的段 */ #include<iostream> #incl ...