在我们学习的这个项目中,模型主要分为两种状态,即进行推断用的inference模式和进行训练用的training模式。所谓推断模式就是已经训练好的的模型,我们传入一张图片,网络将其分析结果计算出来的模式。

本节我们从demo.ipynb入手,一窥已经训练好的Mask-RCNN模型如何根据一张输入图片进行推断,得到相关信息,即inference模式的工作原理。

一、调用推断网络

网络配置

首先进行配置设定,设定项都被集成进class config中了,自建新的设定只要基础改class并更新属性即可,在demo中我们直接使用COCO的预训练模型所以使用其设置即可,但由于我们想检测单张图片,所以需要更新几个相关数目设定:

# 父类继承了Config类,目的就是记录配置,并在其基础上添加了几个新的属性
class InferenceConfig(coco.CocoConfig):
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1 config = InferenceConfig()
config.display()

打印出配置如下:

Configurations:
BACKBONE resnet101
BACKBONE_STRIDES [4, 8, 16, 32, 64]
BATCH_SIZE 1
BBOX_STD_DEV [ 0.1 0.1 0.2 0.2]
COMPUTE_BACKBONE_SHAPE None
DETECTION_MAX_INSTANCES 100
DETECTION_MIN_CONFIDENCE 0.7
DETECTION_NMS_THRESHOLD 0.3
FPN_CLASSIF_FC_LAYERS_SIZE 1024
GPU_COUNT 1
GRADIENT_CLIP_NORM 5.0
IMAGES_PER_GPU 1
IMAGE_CHANNEL_COUNT 3
IMAGE_MAX_DIM 1024
IMAGE_META_SIZE 93
IMAGE_MIN_DIM 800
IMAGE_MIN_SCALE 0
IMAGE_RESIZE_MODE square
IMAGE_SHAPE [1024 1024 3]
LEARNING_MOMENTUM 0.9
LEARNING_RATE 0.001
LOSS_WEIGHTS {'rpn_class_loss': 1.0, 'rpn_bbox_loss': 1.0, 'mrcnn_class_loss': 1.0, 'mrcnn_bbox_loss': 1.0, 'mrcnn_mask_loss': 1.0}
MASK_POOL_SIZE 14
MASK_SHAPE [28, 28]
MAX_GT_INSTANCES 100
MEAN_PIXEL [ 123.7 116.8 103.9]
MINI_MASK_SHAPE (56, 56)
NAME coco
NUM_CLASSES 81
POOL_SIZE 7
POST_NMS_ROIS_INFERENCE 1000
POST_NMS_ROIS_TRAINING 2000
PRE_NMS_LIMIT 6000
ROI_POSITIVE_RATIO 0.33
RPN_ANCHOR_RATIOS [0.5, 1, 2]
RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE 1
RPN_BBOX_STD_DEV [ 0.1 0.1 0.2 0.2]
RPN_NMS_THRESHOLD 0.7
RPN_TRAIN_ANCHORS_PER_IMAGE 256
STEPS_PER_EPOCH 1000
TOP_DOWN_PYRAMID_SIZE 256
TRAIN_BN False
TRAIN_ROIS_PER_IMAGE 200
USE_MINI_MASK True
USE_RPN_ROIS True
VALIDATION_STEPS 50
WEIGHT_DECAY 0.0001

模型初始化

首先初始化模型,然后载入预训练参数文件,在末尾我可视化了模型,不过真的太长了,所以注释掉了。在第一步初始化时就会根据mode参数的具体值建立计算图,本节介绍的推断网络就是在mode参数设定为"inference"时建立的计算网络

# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) # Load weights trained on MS-COCO
model.load_weights(COCO_MODEL_PATH, by_name=True) # model.keras_model.summary()

检测图片

# Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2] # 只要是迭代器调用next方法获取值,学习了
image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))
print(image.shape)
# Run detection
results = model.detect([image], verbose=1) # Visualize results
r = results[0]
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
class_names, r['scores'])

读取一张图片,调用model的detect方法,即可输出结果,最后使用辅助方法可视化结果:

二、推断逻辑概览

inference的前向逻辑如下图所示,我们简单的看一下其计算流程是怎样的,

  1. 左上模块为以ResNet101为基础的FPN特征金字塔网络的特征提取逻辑,可以看到,作者并没有直接将up-down特征使用,而是又做了一次3*3卷积进行了进一步的特征融合。
  2. 出来的各层FPN特征首先(各自独立地)进入了RPN处理层:根据锚框数目信息确定候选区域的分类(前景背景2分类)和回归结果。
    rpn_class:[batch, num_rois, 2]
    rpn_bbox:[batch, num_rois, (dy, dx, log(dh), log(dw))]
  3. 有了众多的候选区域,我们将之送入Proposal筛选部分,首先根据前景得分排序进行初筛(配置会指定这一步保留多少候选框),然后为非极大值抑制做准备:用RPN的回归结果修正anchors,值得注意的是anchors都是归一化的这意味着修值之后还需要做检查以防越界,最后非极大值一致,删减的太多了的话就补上[0, 0, 0, 0]达到配置文件要求的数目(非极大值部分会造成同一个batch中不同图片的候选框数目不一致,但是tensor的维数不能参差不齐,所以要补零使得各张图片候选区域数目一致)
    rpn_rois:[IMAGES_PER_GPU, num_rois, (y1, x1, y2, x2)]
  4. 根据候选区的实际大小(归一化候选区需要映射回原图大小)为候选区选择合适的RPN特征层,ROI Align处理(实际上就是抠出来进行双线性插值到指定大小),得到我们需要的众多等大子图
  5. 对这些子图各自独立的进行分类/回归
    mrcnn_class_logits: [batch, num_rois, NUM_CLASSES] classifier logits (before softmax)
    mrcnn_class: [batch, num_rois, NUM_CLASSES] classifier probabilities
    mrcnn_bbox(deltas): [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
  6. 在分类回归之后使用回归结果对候选框进行修正,然后重新进行FPN特征层选择和ROI Align特征提取,最后送入Mask网络,进行Mask生成。

最后,我们希望网络输出下面的张量:

# num_anchors,    每张图片上生成的锚框数量
# num_rois, 每张图片上由锚框筛选出的推荐区数量,
# # 由 POST_NMS_ROIS_TRAINING 或 POST_NMS_ROIS_INFERENCE 规定
# num_detections, 每张图片上最终检测输出框,
# # 由 DETECTION_MAX_INSTANCES 规定 # detections, [batch, num_detections, (y1, x1, y2, x2, class_id, score)]
# mrcnn_class, [batch, num_rois, NUM_CLASSES] classifier probabilities
# mrcnn_bbox, [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
# mrcnn_mask, [batch, num_detections, MASK_POOL_SIZE, MASK_POOL_SIZE, NUM_CLASSES]
# rpn_rois, [batch, num_rois, (y1, x1, y2, x2, class_id, score)]
# rpn_class, [batch, num_anchors, 2]
# rpn_bbox [batch, num_anchors, 4]

具体每种张量的意义我们会在源码分析中一一介绍。

『计算机视觉』Mask-RCNN_推断网络其一:总览的更多相关文章

  1. 『计算机视觉』经典RCNN_其二:Faster-RCNN

    项目源码 一.Faster-RCNN简介 『cs231n』Faster_RCNN 『计算机视觉』Faster-RCNN学习_其一:目标检测及RCNN谱系 一篇讲的非常明白的文章:一文读懂Faster ...

  2. 『计算机视觉』经典RCNN_其一:从RCNN到Faster-RCNN

    RCNN介绍 目标检测-RCNN系列 一文读懂Faster RCNN 一.目标检测 1.两个任务 目标检测可以拆分成两个任务:识别和定位 图像识别(classification)输入:图片输出:物体的 ...

  3. 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络暨TensorFlow和Keras交互简介

    零.参考资料 有关FPN的介绍见『计算机视觉』FPN特征金字塔网络. 网络构架部分代码见Mask_RCNN/mrcnn/model.py中class MaskRCNN的build方法的"in ...

  4. 『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合

    一.模块概述 上节的最后,我们进行了如下操作获取了有限的proposal, # [IMAGES_PER_GPU, num_rois, (y1, x1, y2, x2)] # IMAGES_PER_GP ...

  5. 『计算机视觉』Mask-RCNN

    一.Mask-RCNN流程 Mask R-CNN是一个实例分割(Instance segmentation)算法,通过增加不同的分支,可以完成目标分类.目标检测.语义分割.实例分割.人体姿势识别等多种 ...

  6. 『计算机视觉』Mask-RCNN_推断网络其六:Mask生成

    一.Mask生成概览 上一节的末尾,我们已经获取了待检测图片的分类回归信息,我们将回归信息(即待检测目标的边框信息)单独提取出来,结合金字塔特征mrcnn_feature_maps,进行Mask生成工 ...

  7. 『计算机视觉』Mask-RCNN_推断网络终篇:使用detect方法进行推断

    一.detect和build 前面多节中我们花了大量笔墨介绍build方法的inference分支,这节我们看看它是如何被调用的. 在dimo.ipynb中,涉及model的操作我们简单进行一下汇总, ...

  8. 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成

    一.RPN锚框信息生成 上文的最后,我们生成了用于计算锚框信息的特征(源代码在inference模式中不进行锚框生成,而是外部生成好feed进网络,training模式下在向前传播时直接生成锚框,不过 ...

  9. 『计算机视觉』Mask-RCNN_训练网络其三:训练Model

    Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...

  10. 『计算机视觉』Mask-RCNN_训练网络其二:train网络结构&损失函数

    Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...

随机推荐

  1. win32汇编(ASM)学习资源

    网站 AoGo汇编小站(MASMPlus作者) Win32Asm教程在线版 Win32Asm教程博客园文件备份版 Masm32补充教程系列 Win32 ASM Tutorial Resource Ki ...

  2. (zhuan) Using convolutional neural nets to detect facial keypoints tutorial

    Using convolutional neural nets to detect facial keypoints tutorial   this blog from: http://danieln ...

  3. Vue学习四:v-if及v-show指令使用方法

    本文为博主原创,未经允许不得转载: <!DOCTYPE html> <html lang="zh"> <head> <meta http- ...

  4. Javascript 高级程序设计(第3版) - 第02章

    2017-05-10 更新原文: http://www.cnblogs.com/daysme 在 html 中使用 js 把js代码写在 <script type="text/java ...

  5. 项目Alpha冲刺--3/10

    项目Alpha冲刺--3/10 1.团队信息 团队名称:基于云的胜利冲锋队 成员信息 队员学号 队员姓名 个人博客地址 备注 221500201 孙文慈 https://www.cnblogs.com ...

  6. Codeforces 767D - Cartons of milk

    题目链接:http://codeforces.com/contest/767/problem/D D比C水系列. 将商店里面的牛奶按照保质期升序排序(显然优先买保质期久的)考虑二分答案,然后再将整个序 ...

  7. fit_transform和transform的区别

    来自:泡泡糖nana 来自:俞驰 1. fit_transform是fit和transform的组合. 2. fit(x,y)传两个参数的是有监督学习的算法,fit(x)传一个参数的是无监督学习的算法 ...

  8. hdu-5707-Combine String

    题意:给你三个字符串,让你计算1 2 串和3 串是否匹配,就是3串可以分解为 1  2 串,字母顺序必须是按照1 2 串的字母前后顺序. DP代码太深奥 看不太透,这个代码比较好理解一点: #incl ...

  9. Array、List和ArrayList的区别(推荐: 浅显易懂)

    数组.List和ArrayList的区别(推荐: 浅显易懂)   有些知识点可能平时一直在使用,不过实际开发中我们可能只是知其然不知其所以然,所以经常的总结会对我们的提高和进步有很大的帮助,这里记录自 ...

  10. (转)c# 扩展方法

    扩展方法能够向现有类型“添加”方法,而无需创建新的派生类型,重新编译或以其他方式修改原始类型.扩展方法必须是静态方法,可以像实例方法一样进行调用.且调用同名中实际定义的方法优先级要高于扩展方法. 先来 ...