#define _CRT_SECURE_NO_WARNINGS
/*
4 2 1
1 3 10 2 4 20
2 3 3
*/
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
using namespace std; const int maxn = + ;
const int INF = ;
//输入
int N, ML, MD;
int AL[maxn], BL[maxn], DL[maxn];
int AD[maxn], BD[maxn], DD[maxn]; int d[maxn]; void solve()
{
fill(d, d + N, INF);
d[] = ; //用Bellman-Ford算法计算d
for (int k = ; k < N; k++) {
//从i+1到i的权值为0
for (int i = ; i + < N; i++) {
if (d[i + ] < INF) d[i] = min(d[i], d[i + ]);
}
//从AL到BL的权值为DL
for (int i = ; i < ML; i++) {
if (d[AL[i] - ] < INF) {
d[BL[i] - ] = min(d[BL[i] - ], d[AL[i] - ] + DL[i]);
}
}
//从BD到AD的权值为-DD
for (int i = ; i < MD; i++) {
if (d[BD[i] - ] < INF) {
d[AD[i] - ] = min(d[AD[i] - ], d[BD[i] - ] - DD[i]);
}
}
}
int res = d[N - ];
if (d[] < ) {
//存在负边无解
res = -;
}
else if (res == INF) {
res = -;
}
printf("%d\n", res);
} void input()
{
cin >> N >> ML >> MD;
for (int i = ; i < ML; i++) {
cin >> AL[i] >> BL[i] >> DL[i];
}
for (int i = ; i < MD; i++) {
cin >> AD[i] >> BD[i] >> DD[i];
}
} int main()
{
input();
solve();
return ;
}

Bellman-Ford算法:POJ No.3169 Layout 差分约束的更多相关文章

  1. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  2. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  3. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  4. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  5. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  6. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  7. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  8. ShortestPath:Layout(POJ 3169)(差分约束的应用)

                布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...

  9. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

随机推荐

  1. 怎样让DBGrid在按住Shift点鼠标的同时能将连续范围的多行选中?

    参见例子:…privateSel : Boolean ;//判断是否处于选择状态BookMark : TBookMark ;//记录先前的位置…procedure TForm1.DBGrid1Mous ...

  2. Baltic Dry Index

    波罗的海干散货指数(Baltic Dry Index,缩写BDI),是航运业的经济指标,它包含了航运业的干散货交易量的转变. BDI波罗的海指数是由几条主要航线的即期运费(Spot Rate)加权计算 ...

  3. codeforces659B

    Qualifying Contest CodeForces - 659B Very soon Berland will hold a School Team Programming Olympiad. ...

  4. Django-website 程序案例系列-1 最简单的web服务器

    templates:html模板文件夹下面建立文件login.html <!DOCTYPE html> <html lang="en"> <head& ...

  5. Docker报错总结

    [Docker push镜像报错] The push refers to a repository [192.168.200.103:5000/rancher/server]Get https://1 ...

  6. python成长之路六-函数的初识

    定义函数 我们现学已知的python函数有<内置函数> 而我们现在要学的是<自定义函数> 1,def  定义一个函数 def name(): # 后接函数名 冒号 pass 2 ...

  7. Arif in Dhaka (First Love Part 2) UVA - 10294(Polya定理)

    这题和POJ-1286一样 题意: 给出t种颜色的n颗珠子 (每种颜色的珠子个数无限制,但总数必须是n), 求能制作出项链和手镯的个数 注意手镯可以翻转和旋转  而 项练只能旋转 解析: 注意Poly ...

  8. Python3网络爬虫(1):利用urllib进行简单的网页抓取

    1.开发环境 pycharm2017.3.3 python3.5 2.网络爬虫的定义 网络爬虫,也叫网络蜘蛛(web spider),如果把互联网比喻成一个蜘蛛网,spider就是一只在网上爬来爬去的 ...

  9. Leetcode 190.颠倒二进制位 By Python

    颠倒给定的 32 位无符号整数的二进制位. 示例: 输入: 43261596 输出: 964176192 解释: 43261596 的二进制表示形式为 000000101001010000011110 ...

  10. Android开源框架Afinal第一篇——揭开圣女的面纱

    Android开源框架Afinal第一篇——揭开圣女的面纱 分类: Android开源框架哪点事2013-09-02 14:25 260人阅读 评论(0) 收藏 举报 Afinal 这是Afinal在 ...