Sift中尺度空间、高斯金字塔、差分金字塔(DOG金字塔)、图像金字塔
转自:https://blog.csdn.net/dcrmg/article/details/52561656
一、 图像金字塔
图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像。把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列像素(尺寸)逐渐降低的图像,一直到金字塔的顶部只包含一个像素点的图像,这就构成了传统意义上的图像金字塔。
获得图像金字塔一般包括二个步骤:
1. 利用低通滤波器平滑图像
2. 对平滑图像进行抽样(采样)
有两种采样方式——上采样(分辨率逐级升高)和下采样(分辨率逐级降低)
上采样:
下采样:
二、高斯金字塔
高斯金字塔式在Sift算子中提出来的概念,首先高斯金字塔并不是一个金字塔,而是有很多组(Octave)金字塔构成,并且每组金字塔都包含若干层(Interval)。
高斯金字塔构建过程:
1. 先将原图像扩大一倍之后作为高斯金字塔的第1组第1层,将第1组第1层图像经高斯卷积(其实就是高斯平滑或称高斯滤波)之后作为第1组金字塔的第2层,高斯卷积函数为:
对于参数σ,在Sift算子中取的是固定值1.6。
2. 将σ乘以一个比例系数k,等到一个新的平滑因子σ=k*σ,用它来平滑第1组第2层图像,结果图像作为第3层。
3. 如此这般重复,最后得到L层图像,在同一组中,每一层图像的尺寸都是一样的,只是平滑系数不一样。它们对应的平滑系数分别为:0,σ,kσ,k^2σ,k^3σ……k^(L-2)σ。
4. 将第1组倒数第三层图像作比例因子为2的降采样,得到的图像作为第2组的第1层,然后对第2组的第1层图像做平滑因子为σ的高斯平滑,得到第2组的第2层,就像步骤2中一样,如此得到第2组的L层图像,同组内它们的尺寸是一样的,对应的平滑系数分别为:0,σ,kσ,k^2σ,k^3σ……k^(L-2)σ。但是在尺寸方面第2组是第1组图像的一半。
这样反复执行,就可以得到一共O组,每组L层,共计O*L个图像,这些图像一起就构成了高斯金字塔,结构如下:
在同一组内,不同层图像的尺寸是一样的,后一层图像的高斯平滑因子σ是前一层图像平滑因子的k倍;
在不同组内,后一组第一个图像是前一组倒数第三个图像的二分之一采样,图像大小是前一组的一半;
高斯金字塔图像效果如下,分别是第1组的4层和第2组的4层:
三、 尺度空间
图像的尺度空间解决的问题是如何对图像在所有尺度下描述的问题。
在高斯金字塔中一共生成O组L层不同尺度的图像,这两个量合起来(O,L)就构成了高斯金字塔的尺度空间,也就是说以高斯金字塔的组O作为二维坐标系的一个坐标,不同层L作为另一个坐标,则给定的一组坐标(O,L)就可以唯一确定高斯金字塔中的一幅图像。
尺度空间的形象表述:
上图中尺度空间中k前的系数n表示的是第一组图像尺寸是当前组图像尺寸的n倍。
四、 DOG金字塔
差分金字塔,DOG(Difference
of Gaussian)金字塔是在高斯金字塔的基础上构建起来的,其实生成高斯金字塔的目的就是为了构建DOG金字塔。
DOG金字塔的第1组第1层是由高斯金字塔的第1组第2层减第1组第1层得到的。以此类推,逐组逐层生成每一个差分图像,所有差分图像构成差分金字塔。概括为DOG金字塔的第o组第l层图像是有高斯金字塔的第o组第l+1层减第o组第l层得到的。
DOG金字塔的构建可以用下图描述:
每一组在层数上,DOG金字塔比高斯金字塔少一层。后续Sift特征点的提取都是在DOG金字塔上进行的。
DOG金字塔的显示效果如下:
这些长得黑乎乎的图像就是差分金字塔的实际显示效果,只在第1组第1层差分图像上模糊可以看到一个轮廓。但其实这里边包含了大量特征点信息,只是我们人眼已经分辨不出来了。
下边对这些DOG图像进行归一化,可有很明显的看到差分图像所蕴含的特征,并且有一些特征是在不同模糊程度、不同尺度下都存在的,这些特征正是Sift所要提取的“稳定”特征:
Sift中尺度空间、高斯金字塔、差分金字塔(DOG金字塔)、图像金字塔的更多相关文章
- 图像金字塔、高斯金字塔、差分金字塔(DOG金字塔)、尺度空间、DoG (Difference of Gaussian)角点检测
[图像金字塔] 图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像.把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列像素(尺 ...
- 图像金字塔及其在 OpenCV 中的应用范例(上)
前言 图像金字塔是计算机图形学中非常重要的一个概念. 本文将详细介绍这个概念,以及它的实现与应用. 图像金字塔的定义 图像金字塔是一组图像的集合,集合中的所有图像都是通过对某一图像连续降采样得到的一组 ...
- Atitit 图像金字塔原理与概率 attilax的理解总结qb23
Atitit 图像金字塔原理与概率 attilax的理解总结qb23 1.1. 高斯金字塔 ( Gaussianpyramid): 拉普拉斯金字塔 (Laplacianpyramid):1 1.2 ...
- OpenCV图像金字塔
图像金字塔 目标 本文档尝试解答如下问题: 如何使用OpenCV函数 pyrUp 和 pyrDown 对图像进行向上和向下采样. 原理 Note 以下内容来自于Bradski和Kaehler的大作: ...
- SIFT中的尺度空间和传统图像金字塔
SIFT中的尺度空间和传统图像金字塔 http://www.zhizhihu.com/html/y2010/2146.html 最近自己混淆了好多概念,一边弄明白的同时,也做了一些记录,分享一下.最近 ...
- 【OpenCV】SIFT原理与源码分析:DoG尺度空间构造
原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论 自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形 ...
- 图像金字塔(pyramid)与 SIFT 图像特征提取(feature extractor)
David Lowe(SIFT 的提出者) 0. 图像金字塔变换(matlab) matlab 对图像金字塔变换接口的支持(impyramid),十分简单好用. 其支持在reduce和expand两种 ...
- DoG 、Laplacian、图像金字塔详解
DoG(Difference of Gaussian) DoG (Difference of Gaussian)是灰度图像增强和角点检测的方法,其做法较简单,证明较复杂,具体讲解如下: Differe ...
- 【计算机视觉】SIFT中LoG和DoG比较
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 在实际计算时,三种方法计算的金字塔组数noctaves ...
随机推荐
- Hive中的order by、sort by、distribute by、cluster by解释及测试
结论: order by:全局排序,这也是4种排序手段中唯一一个能在终端输出中看出全局排序的方法,只有一个reduce,可能造成renduce任务时间过长,在严格模式下,要求必须具备limit子句. ...
- vue中导入外面文件(css,js)方式
有时我们需要导入外面的css文件(例如reset.css文件,bootstrap.css,jQuery.js文件),通常可通过import "name.css"的形式 对于rese ...
- 是时候给Xcode瘦身了
我的Xcode 用的很久了,是从6.0之后一直慢慢升级来的. 最近CleanMyMac 一直提示磁盘空间不足... 扫描一下: 用户数据中竟然有接近17G的数据. 打开Finder使用快捷键comma ...
- kubenets installation--ranchor-mesos
[kube-proxy]http://www.cnblogs.com/xuxinkun/p/5799986.html [flannel] 安装Flannel [root@master ~]# cd ~ ...
- JNI 入门
1.http://cherishlc.iteye.com/blog/1756762 Android 学习笔记--利用JNI技术在Android中调用.调试C++代码 2.http://my.eoe.c ...
- tensorflow入门笔记(二) 滑动平均模型
tensorflow提供的tf.train.ExponentialMovingAverage 类利用指数衰减维持变量的滑动平均. 当训练模型的时候,保持训练参数的滑动平均是非常有益的.评估时使用取平均 ...
- MUI框架a链接href跳转失效解决方法,解决MUI页面不会滚动的方法
//解决 所有a标签 导航不能跳转页面 mui('body').on('tap','a',function(){document.location.href=this.href;}); //解决MUI ...
- document.forms用法示例介绍
概述 forms 返回一个集合 (一个HTMLCollection对象),包含了了当前文档中的所有form元素. 语法 var collection = document.forms; documen ...
- java定时任务的三种方式
/** * 普通thread * 这是最常见的,创建一个thread,然后让它在while循环里一直运行着, * 通过sleep方法来达到定时任务的效果.这样可以快速简单的实现,代码如下 */ ...
- 【Loadrunner】Loadrunner 手动关联技术
Loadrunner 手动关联技术 录制成功,回放失败,怀疑和动态数据有关: 1 重新录制一份脚本,两次录制的脚本进行比对,确定动态数据,复制动态数据: 2 找到第一次产生该动态数据的响应对应的相应 ...