传送门

题意:

给出一个以\(1\)为根的有根树。之后有\(m\)个询问,每个询问为\(v_i,h_i\),需要回答以\(v_i\)为根的子树中,深度为\(h_i\)的那些结点所代表的字符能否构成回文串。

思路:

静态子树询问,考虑\(dsu\ on\ tree\)。

深度可以提前处理出来。对一个子树处理时,用一个数组\(d[deep][cnt]\)来记录。

最后直接根据深度枚举判断即可。

正确性的话是基于算法本身的,我们考虑一个子树时,数组中目前只会储存这颗子树内部的信息。

/*
* Author: heyuhhh
* Created Time: 2019/11/13 16:08:44
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 500005; int n, m;
vector <int> g[N], v[N];
char s[N];
struct Q {
int x, d, id;
}q[N]; int dep[N], sz[N];
int bson[N];
void dfs(int u, int fa, int d) {
sz[u] = 1; dep[u] = d;
int mx = 0;
for(auto v : g[u]) if(v != fa) {
dfs(v, u, d + 1);
sz[u] += sz[v];
if(sz[v] > mx) mx = sz[v], bson[u] = v;
}
}
int d[N][26];
int son;
int ans[N], cnt[26];
void add(int u, int fa, int val) {
d[dep[u]][s[u] - 'a'] += val;
for(auto v : g[u]) if(v != fa && v != son) {
add(v, u, val);
}
}
void dfs2(int u, int fa, int op) {
for(auto v : g[u]) if(v != fa && v != bson[u]) {
dfs2(v, u, 0);
}
if(bson[u]) dfs2(bson[u], u, 1);
son = bson[u];
add(u, fa, 1);
for(auto i : v[u]) {
int D = q[i].d;
int f = 0;
for(int j = 0; j < 26; j++) if(d[D][j] & 1) ++f;
if(f <= 1) ans[q[i].id] = 1;
}
son = 0;
if(!op) add(u, fa, -1);
} void run(){
for(int i = 2; i <= n; i++) {
int p; cin >> p;
g[p].push_back(i);
g[i].push_back(p);
}
cin >> (s + 1);
for(int i = 1; i <= m; i++) {
int x, d; cin >> x >> d;
v[x].push_back(i);
q[i] = Q{x, d, i};
}
dfs(1, 0, 1);
dfs2(1, 0, 1);
for(int i = 1; i <= m; i++) {
if(ans[i]) cout << "Yes" << '\n';
else cout << "No" << '\n';
}
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> n >> m) run();
return 0;
}

【cf570】D. Tree Requests(dsu on tree)的更多相关文章

  1. 【cf600】E. Lomsat gelral(dsu on tree)

    传送门 题意: 求子树众数. 思路: \(dsu\ on\ tree\)模板题,用一个桶记录即可. 感觉\(dsu\ on\ tree\)这个算法的涉及真是巧妙呀,保留重链的信息,不断暴力轻边,并且不 ...

  2. 【CF1023F】Mobile Phone Network(dsu,MST)

    题意: 保证原边以边权单调非减的顺序读入 思路:先把未知边加入,再加入原始边做MST,考虑从大到小,用数据结构维护,每一条原始边相当两个链赋值操作,每一条未知边相当于一个询问,答案即为询问之和 LCT ...

  3. SSAS系列——【08】多维数据(程序展现Cube)

    原文:SSAS系列--[08]多维数据(程序展现Cube) 1.引用DLL? 按照之前安装的MS SQLServer的步骤安装完成后,发现在新建的项目中“Add Reference”时居然找不到Mic ...

  4. 洛谷 P3377 【模板】左偏树(可并堆)

    洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...

  5. 【BZOJ2342】双倍回文(回文树)

    [BZOJ2342]双倍回文(回文树) 题面 BZOJ 题解 构建出回文树之后 在\(fail\)树上进行\(dp\) 如果一个点代表的回文串长度为\(4\)的倍数 并且存在长度为它的一半的回文后缀 ...

  6. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  7. 【BZOJ4372】烁烁的游戏(动态点分治)

    [BZOJ4372]烁烁的游戏(动态点分治) 题面 BZOJ 大意: 每次在一棵书上进行操作 1.将离某个点u的距离不超过d的点的权值加上w 2.询问单点权值 题解 这题和前面那一道震波几乎是一模一样 ...

  8. 【BZOJ1013】球形空间产生器(高斯消元)

    [BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...

  9. 【LightOJ1370】Bi-shoe and Phi-shoe(欧拉函数)

    [LightOJ1370]Bi-shoe and Phi-shoe(欧拉函数) 题面 Vjudge 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. 题解 首先 ...

随机推荐

  1. mysql中用命令行复制表结构(数据)

    mysql中用命令行复制表结构的方法主要有一下几种: 1.只复制表结构到新表 CREATE TABLE 新表 SELECT * FROM 旧表 WHERE 1=2; 或 CREATE TABLE 新表 ...

  2. 多个div使用display:inline-block时候div之间有间隔

    开发场景中用到display:inline-block;然后呢,div间就有间隙,但是ajax加载出来的数据没有间隙,解决办法如下   display:inline-block表示行内块元素,后面自带 ...

  3. bay——Oracle RAC集群体系结构.docx

    Oracle RAC集群体系结构 ————bayaim  2018年10月22日13:33 https://blog.51cto.com/ixdba/862207  一. Oracle集群体系结构 O ...

  4. jira问题更改项目

    1.点击“问题”在问题中,筛选你要修改的问题,以下是以创建用户为搜索条件,然后点击“工具”---移动所有问题 2.选择要移动的问题,选择项目,进行移动

  5. MongoDB学习笔记(三、MongoDB聚合与更新)

    目录: 聚合 更新 更新选择器 ObjectId 更新操作的原子性 聚合: 聚合语法:db.collectionName.aggregate(aggregate_operation) 聚合操作其实就是 ...

  6. 201871010116-祁英红《面向对象程序设计(java)》第十二周学习总结

    博文正文开头格式:(2分) 项目 内容 <面向对象程序设计(java)> https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://ww ...

  7. MQ的幂等性和解决方案

    1.幂等性 在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同.通俗的讲就一个数据,或者一个请求,给你重复来多次,你得确保对应的数据是不会改变的,不能出错:类似于数据库中的乐 ...

  8. 05Shell循环语句

    循环语句 for 语法结构 for 变量名 [ in 取值列表 ] do 循环体 done 注意 当for对文件内容进行逐行处理时,会忽略空行 示例 例1 ping 主机的脚本(初始版):缺点执行过程 ...

  9. Java匹马行天下之学编程的起点——编程常识知多少

    学编程的起点——编程常识知多少 前言: 刚去大学那会,我就知道我被录取的学院是软件学院,还知道一点就是软件学院主要是学电脑的,但具体要学什么其实一无所知.待的时间久了,慢慢的,像“编程”.“软件”.“ ...

  10. [反汇编]函数开始部分利用mov ebx,esp找到返回地址(_KTRAP_FRAME结构)

    我们理解call原理,首先将返回地址压入栈中,之后执行调用. 因此,在一个函数开始部分,esp依旧是上一个栈帧的esp,此时esp指向返回地址. 这就意味着使用 mov ebx,esp,之后 [ebx ...