【cf570】D. Tree Requests(dsu on tree)
题意:
给出一个以\(1\)为根的有根树。之后有\(m\)个询问,每个询问为\(v_i,h_i\),需要回答以\(v_i\)为根的子树中,深度为\(h_i\)的那些结点所代表的字符能否构成回文串。
思路:
静态子树询问,考虑\(dsu\ on\ tree\)。
深度可以提前处理出来。对一个子树处理时,用一个数组\(d[deep][cnt]\)来记录。
最后直接根据深度枚举判断即可。
正确性的话是基于算法本身的,我们考虑一个子树时,数组中目前只会储存这颗子树内部的信息。
/*
* Author: heyuhhh
* Created Time: 2019/11/13 16:08:44
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 500005;
int n, m;
vector <int> g[N], v[N];
char s[N];
struct Q {
int x, d, id;
}q[N];
int dep[N], sz[N];
int bson[N];
void dfs(int u, int fa, int d) {
sz[u] = 1; dep[u] = d;
int mx = 0;
for(auto v : g[u]) if(v != fa) {
dfs(v, u, d + 1);
sz[u] += sz[v];
if(sz[v] > mx) mx = sz[v], bson[u] = v;
}
}
int d[N][26];
int son;
int ans[N], cnt[26];
void add(int u, int fa, int val) {
d[dep[u]][s[u] - 'a'] += val;
for(auto v : g[u]) if(v != fa && v != son) {
add(v, u, val);
}
}
void dfs2(int u, int fa, int op) {
for(auto v : g[u]) if(v != fa && v != bson[u]) {
dfs2(v, u, 0);
}
if(bson[u]) dfs2(bson[u], u, 1);
son = bson[u];
add(u, fa, 1);
for(auto i : v[u]) {
int D = q[i].d;
int f = 0;
for(int j = 0; j < 26; j++) if(d[D][j] & 1) ++f;
if(f <= 1) ans[q[i].id] = 1;
}
son = 0;
if(!op) add(u, fa, -1);
}
void run(){
for(int i = 2; i <= n; i++) {
int p; cin >> p;
g[p].push_back(i);
g[i].push_back(p);
}
cin >> (s + 1);
for(int i = 1; i <= m; i++) {
int x, d; cin >> x >> d;
v[x].push_back(i);
q[i] = Q{x, d, i};
}
dfs(1, 0, 1);
dfs2(1, 0, 1);
for(int i = 1; i <= m; i++) {
if(ans[i]) cout << "Yes" << '\n';
else cout << "No" << '\n';
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> n >> m) run();
return 0;
}
【cf570】D. Tree Requests(dsu on tree)的更多相关文章
- 【cf600】E. Lomsat gelral(dsu on tree)
传送门 题意: 求子树众数. 思路: \(dsu\ on\ tree\)模板题,用一个桶记录即可. 感觉\(dsu\ on\ tree\)这个算法的涉及真是巧妙呀,保留重链的信息,不断暴力轻边,并且不 ...
- 【CF1023F】Mobile Phone Network(dsu,MST)
题意: 保证原边以边权单调非减的顺序读入 思路:先把未知边加入,再加入原始边做MST,考虑从大到小,用数据结构维护,每一条原始边相当两个链赋值操作,每一条未知边相当于一个询问,答案即为询问之和 LCT ...
- SSAS系列——【08】多维数据(程序展现Cube)
原文:SSAS系列--[08]多维数据(程序展现Cube) 1.引用DLL? 按照之前安装的MS SQLServer的步骤安装完成后,发现在新建的项目中“Add Reference”时居然找不到Mic ...
- 洛谷 P3377 【模板】左偏树(可并堆)
洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...
- 【BZOJ2342】双倍回文(回文树)
[BZOJ2342]双倍回文(回文树) 题面 BZOJ 题解 构建出回文树之后 在\(fail\)树上进行\(dp\) 如果一个点代表的回文串长度为\(4\)的倍数 并且存在长度为它的一半的回文后缀 ...
- 【BZOJ2337】Xor和路径(高斯消元)
[BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...
- 【BZOJ4372】烁烁的游戏(动态点分治)
[BZOJ4372]烁烁的游戏(动态点分治) 题面 BZOJ 大意: 每次在一棵书上进行操作 1.将离某个点u的距离不超过d的点的权值加上w 2.询问单点权值 题解 这题和前面那一道震波几乎是一模一样 ...
- 【BZOJ1013】球形空间产生器(高斯消元)
[BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...
- 【LightOJ1370】Bi-shoe and Phi-shoe(欧拉函数)
[LightOJ1370]Bi-shoe and Phi-shoe(欧拉函数) 题面 Vjudge 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. 题解 首先 ...
随机推荐
- 来个ADG switch over
怕以后忘了,做个试验记录一下,这个switch比较常规1]主--备库先查一遍,如下的话就可以开始了两者当前序列一致角色状态如下--主库SQL> archive log list;数据库日志模式 ...
- HTTP 简述
HTTP 简介: 1.Hyper Text Transfer Protocol(超文本传输协议),主要用于 Web 浏览器和 Web 服务器之间的通信 2.它基于 TCP/IP 通信协议来传输数据 3 ...
- PHP 部分语法(二)
array() 创建数组: 1.数值数组:带数字 ID 键的数组 2.关联数组:带有指定键的数组,键关联一个值 3.多维数组:包含一个或多个数组的数组 $arr = array("Hello ...
- bay——安装_Oracle 12C-RAC-Centos7.txt
★★★____★☆★〓〓〓〓→2019年6月26日10:29:42 bayaim-RAC ——搭建第4次VMware vSphere Client6.0 ----------------------- ...
- linux 的swap、swappiness及kswapd原理【转】
本文讨论的 swap基于Linux4.4内核代码 .Linux内存管理是一套非常复杂的系统,而swap只是其中一个很小的处理逻辑. 希望本文能让读者了解Linux对swap的使用大概是什么样子.阅读完 ...
- Liu Junqiao:Raid 0 1 5 6 特性
Raid工作原理及优缺点 Raid工作原理及优缺点Raid 0Raid 1Raid 5Raid 6Raid 1 0Raid 5 0Raid 6 0 Raid 0 特点 采用剥离,数据将在几个磁盘上进行 ...
- May 26th, 2019. Week 22nd, Sunday
A real loser is somebody that's so afraid of not winning, they don't even try. 真正的失败者,是那些因为害怕不能成功,就连 ...
- spring的事件机制实战
理论 在分布式场景下,实现同步转异步的方式有三种方式: 1.异步线程池执行:比如借助@Asyn注解,放到spring自带的线程池中去执行: 2.放到消息队列中,在消费者的代码中异步的消费,执行相关的逻 ...
- 洛谷 P2657 (数位DP)
### 洛谷 P2657 题目链接 ### 题目大意:给你一个数的范围 [A,B] ,问你这段区间内,有几个数满足如下条件: 1.两个相邻数位上的数的差值至少为 2 . 2.不包含前导零. 很简单的数 ...
- SpringMVC跟Struts2的区别
SpringMVC跟Struts2的区别 1.SpringMVC的入口是servlet:Struts2的入口是Filter. 2.SpringMVC性能方面会比Struts2好一点,SpringMVC ...