Escape

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 16    Accepted Submission(s): 12

Problem Description
Given a maze of size n×m. The rows are numbered 1, 2, · · · , n from top to bottom while the columns are numbered 1, 2, · · · , m from left to right, which means that (1, 1) is the top-left corner and that (n, m) is the bottom-right corner. And for each cell of size 1 × 1, it is either blank or blocked.
There are a robots above the maze. For i-th robot, it is initially positioned exactly above the cell (1, pi), which can be described as (0, pi). And the initial moving direction of the robots are all downward, which can be written as (1, 0) in the vector form.
Also, there are b exits below the maze. For i-th exit, it is positioned exactly below the cell (n, ei), which can be described as (n + 1, ei).
Now, you want to let the robots escape from the maze by reaching one of the exits. However, the robots are only able to go straight along their moving directions and can’t make a turn. So you should set some turning devices on some blank cells in the maze to help the robots make turns.
There are 4 types of turning devices:

  • “NE-devices” : make the robots coming from above go rightward, and make the robots coming from right go upward. Coming from left or below is illegal.
  • “NW-devices” : make the robots coming from above go leftward, and make the robots coming from left go upward. Coming from right or below is illegal.
  • “SE-devices” : make the robots coming from below go rightward, and make the robots coming from right go downward. Coming from left or above is illegal.
  • “SW-devices” : make the robots coming from below go leftward, and make the robots coming from left go downward. Coming from right or above is illegal.

For each cell, the number of turning devices on it can not exceed 1. And collisions between the robots are ignored, which allows multiple robots to visit one same cell even at the same time.
You want to know if there exists some schemes to set turning devices so that all the a robots can reach one of the b exits after making a finite number of moves without passing a blocked cell or passing a turning device illegally or going out of boundary(except the initial position and the exit).
If the answer is yes, print “Yes” in a single line, or print “No” if the answer is no.

 
Input
The first line contains one positive integer T (1 ≤ T ≤ 10), denoting the number of test cases.
For each test case:
The first line contains four positive integers n, m, a, b (1 ≤ n, m ≤ 100, 1 ≤ a, b ≤ m), denoting the number of rows and the number of columns in the maze, the number of robots and the number of exits respectively.
Next n lines each contains a string of length m containing only “0” or “1”, denoting the initial maze, where cell (i, j) is blank if the j-th character in i-th string is “0”, while cell (i, j) is blocked if the j-th character in i-th string is “1”.
The next line contains a integers pi (1 ≤ pi ≤ m), denoting the initial positions (0, pi) of the robots.
The next line contains b integers ei (1 ≤ ei ≤ m), denoting the positions (n + 1, ei) of the exits.
It is guaranteed that all pis are pairwise distinct and that all eis are also pairwise distinct.
 
Output
Output T lines each contains a string “Yes” or “No”, denoting the answer to corresponding test case.
 
Sample Input
2
3 4 2 2
0000
0011
0000
1 4
2 4
3 4 2 2
0000
0011
0000
3 4
2 4
 
Sample Output
Yes
No

Hint

 
Source

题解:

每个格子的水平方向和竖直方向都只能被使用一次,因为两个机器人的路径不可能合并,也不可能迎面相撞。如果一个格子没有放转弯装置,则可以被水平穿过一次,竖直穿过一次。如果一个格子放了转弯装置,则这个格子只能被一个机器人经过一次。所以对于所有非障碍格子,可以拆成水平点和竖直点,每个点限流 1,上下相邻的格子连竖直点(竖直直行),左右相邻的格子连水平点(水平直行),格子内部的水平点和竖直点互相相连(转弯),源连向起点的竖直点,出口的竖直点连向汇,跑最大流,如果最大流 = 机器人个数,则输出 Yes,否则输出 No。
 
参考代码:
#include<bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
const int N=,M=;
int T,n,m,a,b,h[N],s,t,base;
char g[][];
int head[N],nex[M],w[M],to[M],tot;
inline void ade(int a,int b,int c)
{
to[++tot]=b;
nex[tot]=head[a];
w[tot]=c;
head[a]=tot;
}
inline void add(int a,int b,int c)
{
ade(a,b,c);
ade(b,a,);
}
inline int id(int x,int y){return m*x+y;}
inline int bfs()
{
memset(h,,sizeof h);
h[s]=;
queue<int> q; q.push(s);
while(q.size())
{
int u=q.front(); q.pop();
for(int i=head[u];i;i=nex[i])
{
if(!h[to[i]]&&w[i])
{
h[to[i]]=h[u]+;
q.push(to[i]);
}
}
}
return h[t];
}
int dfs(int x,int f)
{
if(x==t) return f;
int fl=;
for(int i=head[x];i&&f;i=nex[i])
{
if(h[to[i]]==h[x]+&&w[i])
{
int mi=dfs(to[i],min(w[i],f));
w[i]-=mi; w[i^]+=mi; fl+=mi; f-=mi;
}
}
if(!fl) h[x]=-;
return fl;
}
int dinic()
{
int res=;
while(bfs()) res+=dfs(s,inf);
return res;
}
signed main()
{
cin>>T;
while(T--)
{
tot=;
memset(head,,sizeof head);
cin>>n>>m>>a>>b;
base=(n+)*m; t=base*;
for(int i=;i<=n;i++) scanf("%s",g[i]+);
for(int i=;i<=a;i++)
{
int x; scanf("%d",&x); g[][x]='';
add(s,id(,x),); add(id(,x),id(,x),);
}
for(int i=;i<=b;i++)
{
int x; scanf("%d",&x);
g[n+][x]='';
add(id(n+,x),t,inf);
add(id(n,x),id(n+,x),inf);
}
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(g[i][j]=='') continue;
if(i>) add(id(i,j),id(i-,j),);
if(i<n) add(id(i,j),id(i+,j),);
if(j>) add(id(i,j)+base,id(i,j-)+base,);
if(j<m) add(id(i,j)+base,id(i,j+)+base,);
add(id(i,j),id(i,j)+base,);add(id(i,j)+base,id(i,j),);
}
}
puts(dinic()==a?"Yes":"No");
}
return ;
}

2019CCPC秦皇岛 E题 Escape(网络流)的更多相关文章

  1. 2019CCPC秦皇岛D题 Decimal

    Decimal Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total S ...

  2. 2019CCPC秦皇岛I题 Invoker(DP)

    Invoker Time Limit: 15000/12000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  3. 2019CCPC 秦皇岛 E.Escape

    传送门 题意: 给出一个\(n*m\)的迷宫,有\(a\)个入口,\(b\)个出口. 现在有\(a\)个机器人都从入口出发,一开始方向默认为下,你可以选在在一些格子上面放置一个转向器,转向器有四种: ...

  4. 2019-ccpc秦皇岛现场赛

    https://www.cnblogs.com/31415926535x/p/11625462.html 昨天和队友模拟了下今年秦皇岛的区域赛,,,(我全程在演 题目链接 D - Decimal 签到 ...

  5. 2017 CCPC秦皇岛 L题 One Dimensions Dave

    BaoBao is trapped in a one-dimensional maze consisting of  grids arranged in a row! The grids are nu ...

  6. 2019CCPC秦皇岛自我反省&部分题解

    练了一年半了,第一次打CCPC,险些把队友坑了打铁,最后也是3题危险捡了块铜. 非常水的点双连通,我居然不相信自己去相信板子,唉,结果整来整去,本来半个小时能出的题,整到了3个小时,大失误呀,不然就可 ...

  7. 网络流最经典的入门题 各种网络流算法都能AC。 poj 1273 Drainage Ditches

    Drainage Ditches 题目抽象:给你m条边u,v,c.   n个定点,源点1,汇点n.求最大流.  最好的入门题,各种算法都可以拿来练习 (1):  一般增广路算法  ford() #in ...

  8. hdu 3572 Escape 网络流

    题目链接 给一个n*m的图, 里面有一些点, '.'代表空地, '#'代表墙, 不可以走, '@'代表大门, 可以有多个, 'X'代表人, 问所有人都走出大门需要的最短时间, 每一时刻一个格子只能有一 ...

  9. POJ 2455 网络流 基础题 二分+网络流 dicnic 以及 sap算法

    Secret Milking Machine Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8189   Accepted: ...

随机推荐

  1. Hadoop4-HDFS分布式文件系统原理

    一.简介 1.分布式文件系统钢结构 分布式文件系统由计算机集群中的多个节点构成,这些节点分为两类: 主节点(MasterNode)或者名称节点(NameNode) 从节点(Slave Node)或者数 ...

  2. 在VMware CentOS7挂载系统光盘搭建本地仓库

    1.软件准备: 安装VMware环境,在这里我使用的是VMware15 一个虚拟机系统,在这里我使用的是CentOS7(版本不同可能会有一点出入,但是应该相差不大) 在这里还有一个前提是已经建立好了y ...

  3. 多线程之美1一volatile

    目录 一.java内存模型 1.1.抽象结构图 1.2.概念介绍 二.volatile详解 2.1.概念 2.2.保证内存可见性 2.3.不保证原子性 2.4.有序性 一.java内存模型 1.1.抽 ...

  4. 详细讲解 Redis 的两种安装部署方式

    Redis 是一款比较常用的 NoSQL 数据库,我们通常使用 Redis 来做缓存,这是一篇关于 Redis 安装的文章,所以不会涉及到 Redis 的高级特性和使用场景,Redis 能够兼容绝大部 ...

  5. [Office] 显示Office 2013中的Developer Tab和启用Macro

    显示Developer Tab是对Office 2013进行开发的前提条件. 在Excel 2013中,打开Excel Option: 只要勾选对应的Developer选项即可显示该tab. 随着Of ...

  6. 微信小程序this.data和this.setData({})的区别

    this.data.xx是用来获取页面data对象的----------只是js(逻辑层)数据的更改: this.setData是用来更新界面的---------用于更新view层的.

  7. 用c语言打印一个三角形

    #define _CRT_SECURE_NO_WARNINGS#include<stdio.h>#include<string.h>#include<stdlib.h&g ...

  8. 【SSM Spring 线程池 OJ】 使用Spring线程池ThreadPoolTaskExecutor

    最近做的Online Judge项目,在本地判题的实现过程中,遇到了一些问题,包括多线程,http通信等等.现在完整记录如下: OJ有一个业务是: 用户在前端敲好代码,按下提交按钮发送一个判题请求给后 ...

  9. linux磁盘分区、格式化、挂载

    新建分区的操作步骤,如下图: 1)RAID卡: 机器有没有RAID卡可以在开机时看有没有出现配置RAID什么的提示(亲测),系统运行时有没有,不知道! 服务器大多有这个新加硬盘后不修改raid,开即f ...

  10. ZeroC ICE的远程调用框架 ServantLocator与Locator

    ServantLocator定位的目标是Servant,而Locator定位的目标是“Ice Object”,即一个可定位的“Ice Object”代理.Servant是::Ice::Object的继 ...