#3144. 「APIO 2019」奇怪装置
#3144. 「APIO 2019」奇怪装置
题目描述
考古学家发现古代文明留下了一种奇怪的装置。该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\)。
经过研究,科学家对该装置得出了一个结论:该装置是一个特殊的时钟,它从过去的某个时间点开始测量经过的时刻数 \(t\),但该装置的创造者却将 \(t\) 用奇怪的方式显示出来。若从该装置开始测量到现在所经过的时刻数为 \(t\),装置会显示两个整数:\(x = ((t + \lfloor \frac{t}{B} \rfloor) \bmod A)\),与 \(y = (t \bmod B)\)。这里 \(\lfloor x\rfloor\) 是下取整函数,表示小于或等于 \(x\) 的最大整数。
考古学家通过进一步研究还发现,该装置的屏幕无法一直工作。实际上,该装置的屏幕只在 \(n\) 个连续的时间区间段中能正常工作。第 \(i\) 个时间段从时刻 \(l_i\) 到时刻 \(r_i\)。现在科学家想要知道有多少个不同的数对 \((x, y)\) 能够在该装置工作时被显示出来。
两个数对 \((x_1, y_1)\) 和 \((x_2, y_2)\) 不同当且仅当 \(x_1 \not = x_2\) 或 \(y_1 \not = y_2\)。
输入格式
第一行包含三个整数 \(n, A\) 与 \(B\)。
接下来 \(n\) 行每行两个整数 \(l_i, r_i\),表示装置可以工作的第 \(i\) 个时间区间。
输出格式
输出一行一个整数表示问题的答案。
数据范围与提示
对于全部数据,\(1\le n\le 10^6,1\le A,B\le 10^{18},0\le l_i\le r_i\le 10^{18},r_i<l_{i+1}\)。
首先这玩意肯定是有环的。找到过后将所有线段平移到环内就可以直接做线段覆盖。
对于一个数\(t\),首先跟他同构的数可以表示为\(t+k*B\),因为要保证\(y\)相同。然后\(t\)每增加\(B\),\(x\)就增加\(B+1\),增加了\(\frac{A}{\gcd(A,B+1)}\)后有会同构。所以环大小\(\frac{B*A}{\gcd(A,B+1)}\)。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 1000005
using namespace std;
inline ll Get() {ll x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n;
ll A,B,len;
struct node {
ll l,r;
bool operator <(const node &a)const {
if(l!=a.l) return l<a.l;
return r<a.r;
}
}s[N<<1];
ll gcd(ll a,ll b) {return !b?a:gcd(b,a%b);}
int main() {
n=Get(),A=Get(),B=Get();
for(int i=1;i<=n;i++) s[i].l=Get(),s[i].r=Get();
ll g=gcd(A,B+1);
ll ans=0;
if((long double)A/g*B>1e18) {
for(int i=1;i<=n;i++) ans+=s[i].r-s[i].l+1;
} else {
ll len=A/g*B;
int tot=n;
for(int i=1;i<=n;i++) {
if(s[i].r-s[i].l+1>=len) {
cout<<len;
return 0;
}
s[i].l%=len,s[i].r%=len;
if(s[i].l>s[i].r) {
s[++tot].l=0,s[tot].r=s[i].r;
s[i].r=len-1;
}
}
sort(s+1,s+1+tot);
ll last=-1;
for(int i=1;i<=tot;i++) {
if(s[i].r<last) continue ;
ans+=s[i].r-max(s[i].l-1,last);
last=s[i].r;
}
}
cout<<ans;
return 0;
}
#3144. 「APIO 2019」奇怪装置的更多相关文章
- 【LOJ #3144】「APIO 2019」奇怪装置
题意: 定义将一个\(t\)如下转换成一个二元组: \[ f(t) = \begin{cases} x = (t + \left\lfloor \frac{t}{B} \right \rfloor) ...
- 「APIO 2019」奇怪装置
题目 考虑推柿子 最开始的想法是如果两个\(t\)在\(mod\ B\)意义下相等,那么只需要比较一下\((t+\left \lfloor \frac{t}{B}\rfloor \right)mod\ ...
- #3146. 「APIO 2019」路灯
#3146. 「APIO 2019」路灯 题目描述 一辆自动驾驶的出租车正在 Innopolis 的街道上行驶.该街道上有 \(n + 1\) 个停车站点,它们将街道划分成了 \(n\) 条路段.每一 ...
- #3145. 「APIO 2019」桥梁
#3145. 「APIO 2019」桥梁 题目描述 圣彼得堡市内所有水路长度总和约 282 千米,市内水域面积占城市面积的 7%.--来自维基百科 圣彼得堡位于由 \(m\) 座桥梁连接而成的 \(n ...
- 「APIO 2019」桥梁
题目 三天终于把\(APIO\)做完了 这题还是比较厉害的,如果不知道这是个分块应该就自闭了 考虑一个非常妙的操作,按照操作分块 我们设一个闸值\(S\),把\(S\)个边权修改操作分成一块,把所有的 ...
- 「APIO 2019」路灯
题目 显然一个熟练的选手应该能一眼看出我们需要维护点对的答案 显然在断开或连上某一条边的时候只会对左右两边联通的点产生贡献,这个拿\(set\)维护一下就好了 那现在的问题就是怎么维护了 考虑一个非常 ...
- 「WC 2019」数树
「WC 2019」数树 一道涨姿势的EGF好题,官方题解我并没有完全看懂,尝试用指数型生成函数和组合意义的角度推了一波.考场上只得了 44 分也暴露了我在数数的一些基本套路上的不足,后面的 \(\ex ...
- LOJ#3054. 「HNOI 2019」鱼
LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...
- 「UNR#1」奇怪的线段树
「UNR#1」奇怪的线段树 一道好题,感觉解法非常自然. 首先我们只需要考虑一次染色最下面被包含的那些区间,因为把无解判掉以后只要染了一个节点,它的祖先也一定被染了.然后发现一次染色最下面的那些区间一 ...
随机推荐
- 华为2019年NE40E-X8,承诺命令
commit每敲一行命令,都得确认一下.以防误操作.
- react 项目引入路由
下载路由包 npm i react-router-dom -d 前台路由 登陆: /login /login.jsx App.js import React ,{Component} from 're ...
- Python函数(函数定义、函数调用)用法详解
Python 中,函数的应用非常广泛,前面章节中我们已经接触过多个函数,比如 input() .print().range().len() 函数等等,这些都是 Python 的内置函数,可以直接使用. ...
- go语言的常量
Go 语言常量 常量是一个简单值的标识符,在程序运行时,不会被修改的量. 常量中的数据类型只可以是布尔型.数字型(整数型.浮点型和复数)和字符串型. 常量的定义格式: const identifier ...
- Python 爬虫从入门到进阶之路(四)
之前的文章我们做了一个简单的例子爬取了百度首页的 html,我们用到的是 urlopen 来打开请求,它是一个特殊的opener(也就是模块帮我们构建好的).但是基本的 urlopen() 方法不支持 ...
- Linux之自动化部署
No.1 自动化部署git项目 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一 ...
- python进程基础点整理
操作系统 串行: 一个程序完完整整的执行完再执行下一个 并发: 看起来像是同时运行,其实就是程序间的切换频率比较快,看不出来 并行:真正的同时运行 多道技术 空间复用:共用一个内存条,多个进程相互隔离 ...
- ASP.NET Core Web 应用程序系列(四)- ASP.NET Core 异步编程之async await
PS:异步编程的本质就是新开任务线程来处理. 约定:异步的方法名均以Async结尾. 实际上呢,异步编程就是通过Task.Run()来实现的. 了解线程的人都知道,新开一个线程来处理事务这个很常见,但 ...
- PlayJava Day021
容器: Collection接口:定义了存取一组对象的方法,其子接口Set和List分别定义了存储方式 List:存储数据有序且可重复 ----> ArrayList Set:存储数据无序且不可 ...
- Go-接口(作用类似python类中的多态)
一.定义接口 type Person interface { Run() //只要有run方法的都算 Person结构体 } //还有定义方法 type Person2 interface { Spe ...