3124: [Sdoi2013]直径

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 1222  Solved: 580
[Submit][Status][Discuss]

Description

小Q最近学习了一些图论知识。根据课本,有如下定义。树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度。如果一棵树有N个节点,可以证明其有且仅有N-1 条边。 路径:一棵树上,任意两个节点之间最多有一条简单路径。我们用 dis(a,b)
表示点a和点b的路径上各边长度之和。称dis(a,b)为a、b两个节点间的距离。  
 直径:一棵树上,最长的路径为树的直径。树的直径可能不是唯一的。 
现在小Q想知道,对于给定的一棵树,其直径的长度是多少,以及有多少条边满足所有的直径都经过该边。

Input

第一行包含一个整数N,表示节点数。 
接下来N-1行,每行三个整数a, b, c ,表示点 a和点b之间有一条长度为c
的无向边。

Output

共两行。第一行一个整数,表示直径的长度。第二行一个整数,表示被所有
直径经过的边的数量。

Sample Input

6
3 1 1000
1 4 10
4 2 100
4 5 50
4 6 100

Sample Output

1110
2

【样例说明】
直径共有两条,3 到2的路径和3到6的路径。这两条直径都经过边(3, 1)和边(1, 4)。

HINT

对于100%的测试数据:2≤N≤200000,所有点的编号都在1..N的范围内,

边的权值≤10^9。

  一道定义题??
  对于树的直径我们直接两边dfs,第一遍找出离1最远的点,第二遍找出离那个点最远的另一个点,这就是直径之一。对于每一条直径,他们至少是交于一个点的,那么,我们对于我们已知直径的一个端点建树,标记当前直径上的每一个点。然后对于每一个点记录一下该节点的子树中到根节点最远的是多远,顺便记录一下一共有几个,如果当前点是直径上的点的话我们先判断一下是否存在两个及以上最长路径,如果是的话ans缩小到deep[x]-1,如果存在子树中到根节点的距离的最大值等于根节点到该点的距离,我们直接将ans固定为ans=ans-deep[x]-1,然后输出就好了。
 #include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define N 200005
using namespace std;
int n,zz,a[N];
struct ro{
int to,next;
long long l;
}road[N*];
void build(int x,int y,int z)
{
zz++;
road[zz].next=a[x];
road[zz].l=z;
road[zz].to=y;
a[x]=zz;
}
long long dis[N];
int deep[N],fa[N];
bool bj[N];
void dfs1(int x)
{
for(int i=a[x];i;i=road[i].next)
{
int y=road[i].to;
if(y==fa[x])continue;
fa[y]=x;
deep[y]=deep[x]+;
dis[y]=dis[x]+road[i].l;
dfs1(y);
}
}
int ans;
long long ma[N];
void dfs2(int x)
{
long long mx=-;
int js=,js2=;
for(int i=a[x];i>;i=road[i].next)
{
int y=road[i].to;
if(y==fa[x])continue;
dfs2(y);
if(ma[y]>=mx)
{
if(ma[y]>mx)mx=ma[y],js=;
else js++;
}
if(ma[y]-dis[x]==dis[x])js2++;
}
if(bj[x])
{
if(js2)
{
ans-=deep[x]-;
printf("%d\n",max(ans,));
exit();
}
else if(js>)
{
ans=deep[x]-;
}
}
mx=max(mx,dis[x]);
ma[x]=mx;
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
build(x,y,z);
build(y,x,z);
}
dfs1();
memset(fa,,sizeof(fa));
int st1=,st2=;
for(int i=;i<=n;i++)if(dis[i]>dis[st1]) st1=i;
memset(deep,,sizeof(deep));
deep[st1]=;
memset(dis,,sizeof(dis));
dfs1(st1);
for(int i=;i<=n;i++) if(dis[i]>dis[st2]) st2=i;
printf("%lld\n",dis[st2]);
ans=deep[st2]-;
int now=st2;
while(now!=st1)
{
bj[now]=;
now=fa[now];
}
dfs2(st1);
printf("%d\n",ans);
return ;
}

Bzoj 3124: [Sdoi2013]直径 题解的更多相关文章

  1. bzoj 3124: [Sdoi2013]直径

    #include<cstdio> #include<iostream> #define M 400009 #define ll long long using namespac ...

  2. bzoj 3124 [Sdoi2013]直径(dfs)

    Description 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节点,可以证明其有且仅有N-1 条边. 路径:一 ...

  3. 3124: [Sdoi2013]直径

    3124: [Sdoi2013]直径 https://www.lydsy.com/JudgeOnline/problem.php?id=3124 分析: 所有直径都经过的边,一定都是连续的一段.(画个 ...

  4. Bzoj 3131 [Sdoi2013]淘金 题解

    3131: [Sdoi2013]淘金 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 733  Solved: 363[Submit][Status][ ...

  5. [SDOI2013]直径 题解

    题面 这道题明显的一定要找到直径的具体路径,所以两遍dfs是比较好的选择: 第一问是一道弱智题吧? 主要难度全部分摊在了第二问: 其实不难,先找到任意一个直径: 对于任意一个在直径上的点: 设nxt[ ...

  6. bzoj千题计划134:bzoj3124: [Sdoi2013]直径

    http://www.lydsy.com/JudgeOnline/problem.php?id=3124 第一问: dfs1.dfs2 dfs2中记录dis[i]表示点i距离最长链左端点的距离 第二问 ...

  7. bzoj3124: [Sdoi2013]直径 树形dp two points

    题目链接 bzoj3124: [Sdoi2013]直径 题解 发现所有直径都经过的边 一定在一条直径上,并且是连续的 在一条直径上找这段区间的两个就好了 代码 #include<map> ...

  8. [洛谷P3304] [SDOI2013]直径

    洛谷题目链接:[SDOI2013]直径 题目描述 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节点,可以证明其有且仅 ...

  9. 【BZOJ3124】[Sdoi2013]直径 树形DP(不用结论)

    [BZOJ3124][Sdoi2013]直径 Description 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节 ...

随机推荐

  1. 前端开发常用PhotoShop快捷键整理(更新中)

    图片来源 UI提供的psd图 印屏幕:PrScrn SysRq(键盘按键) 浏览器(插件)获取 常用的快捷键: 新建 Ctrl + N 取消选框 Ctrl + D 反选 Ctrl + shift + ...

  2. Windows Phone Launcher class

    Starts the default app associated with the specified file or URI. Launch a file contained in the app ...

  3. UWP入门(二) -- 基础笔记

    原文:UWP入门(二) -- 基础笔记 不错的UWP入门视频,1092417123,欢迎交流 UWP-04 - What i XMAL? XAML - XML Syntax(语法) ,create i ...

  4. UWP-动态磁贴

    原文:UWP-动态磁贴 来自:IT追梦园 (http://www.zmy123.cn/?p=1172) UWP应用的一大特色就是动态磁贴,所以,你的应用如果还没有设置动态磁贴,那么,和我一起来为应用加 ...

  5. Qt移动开发大部分的场景基本上实现没问题,listview支持刷新3000~5000的实时数据没有任何压力(QML的几个大型应用)

    作者:xq zh链接:https://www.zhihu.com/question/29636221/answer/47265577来源:知乎著作权归作者所有,转载请联系作者获得授权. 不知道vs移动 ...

  6. Windows下获取高精度时间注意事项 [转贴 AdamWu]

    花了很长时间才得到的经验,与大家分享. 1. RDTSC - 粒度: 纳秒级 不推荐优势: 几乎是能够获得最细粒度的计数器抛弃理由: A) 定义模糊 - 曾经据说是处理器的cycle counter, ...

  7. 【canvas】基础练习一 图形

    Demo1[绘制一条线] <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...

  8. 解决Mac下sed命令报错的问题

    在Mac上准备批量替换一些文字,使用sed命令,如下: sed -i 's/xxx/yyy/g' file 同样的命令在Linux上是可以成功运行的,注意Mac下man sed中-i参数的说明: 原来 ...

  9. Laravel --- 部署Laravel项目到vps主要步骤以及遇到的问题记录

    买了一个国外的vps,然后搭建环境并且跑了下laravel,折腾了一天半左右,遇到的问题和操作在此记录下: 1.我把本地的代码用git方式上传到github,然后在vps用git下载代码,步骤如下 - ...

  10. Spring Boot2(一):使用Spring Boot2集成Mybatis基础搭建

    Mybatis 初期使用比较麻烦,需要各种配置文件.实体类.Dao 层映射关联.还有一大推其它配置.mybatis-spring-boot-starter 就是 Spring Boot+ Mybati ...