Hamed has recently found a string t and suddenly became quite fond of it. He spent several days trying to find all occurrences of t in other strings he had. Finally he became tired and started thinking about the following problem. Given a string s how many ways are there to extract k ≥ 1 non-overlapping substrings from it such that each of them contains string t as a substring? More formally, you need to calculate the number of ways to choose two sequences a1, a2, ..., ak and b1, b2, ..., bk satisfying the following requirements:

  • k ≥ 1
  •   t is a substring of string saisai + 1... sbi (string s is considered as 1-indexed).

As the number of ways can be rather large print it modulo 109 + 7.

Input

Input consists of two lines containing strings s and t (1 ≤ |s|, |t| ≤ 105). Each string consists of lowercase Latin letters.

Output

Print the answer in a single line.


此题两种DP方式。

先预处理出来b串在a串中匹配的位置,然后开始DP。

设$f[i]$表示考虑到$i$位置,且$i$的最后一个字符串与b串是匹配的方案数。

显然如果$i$不是b的匹配位置,$f[i]=f[i-1]$。

如果$i$是b的匹配位置,首先考虑只有一个串, 那么答案就是$i-lb+1$,因为$1$到$i-lb+1$的所有位置都可以作为一个开始。

那如果是多个串呢?如果我们设最后一个串从位置$k$开始,那么前面的所有的方案数就是$\large \sum_{i=1}^{k}f[i]$,对于每个位置k求和,就是$\large \sum_{k=1}^{i-lb} \sum_{j=1}^{k} f[j]$。

这样只用记录一下f的前缀和和f的前缀和的前缀和就可以快速转移啦。

代码在后面贴。

还有一种方法,状态的定义略微的有些不同,设$f[i]$表示,到第i个位置之前总共有多少方案,其实就是前缀和了一下。

每次记录上一个匹配点,从上一个匹配点开始转移。

代码贴后面了。

找匹配点可以用kmp,或者hash都行。


方法1:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
using namespace std;
#define reg register
#define mod 1000000007
int la, lb;
char a[], b[];
unsigned long long hsha[], hshb[], fac[];
bool End[];
int f[], sum[], Ssum[];
int ans; int main()
{
scanf("%s%s", a + , b + );
la = strlen(a + ), lb = strlen(b + );
for (reg int i = ; i <= la ; i ++) hsha[i] = hsha[i - ] * + (a[i] - 'a' + );
for (reg int i = ; i <= lb ; i ++) hshb[i] = hshb[i - ] * + (b[i] - 'a' + );
fac[] = ;
for (reg int i = ; i <= max(la, lb) ; i ++) fac[i] = fac[i - ] * ;
for (reg int i = lb ; i <= la ; i ++)
if (hsha[i] - hsha[i - lb] * fac[lb] == hshb[lb]) End[i] = ;
for (reg int i = ; i <= la ; i ++)
{
if (!End[i]) f[i] = f[i-];
else f[i] = Ssum[i - lb] + i - lb + ;
sum[i] = sum[i-] + f[i];if(sum[i] >= mod) sum[i] -= mod;
Ssum[i] = Ssum[i-] + sum[i];if(Ssum[i] >= mod) Ssum[i] -= mod;
}
for (reg int i = ; i <= la ; i ++)
ans = (ans + f[i]) % mod;
cout << ans << endl;
return ;
}

方法2:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
using namespace std;
#define reg register
#define mod 1000000007
int la, lb;
char a[], b[];
int nxt[];
bool End[];
int f[], sum[]; int main()
{
scanf("%s%s", a + , b + );
la = strlen(a + ), lb = strlen(b + );
int k = ;
for (reg int i = ; i <= lb ; i ++)
{
while(k and b[i] != b[k + ]) k = nxt[k];
if (b[k + ] == b[i]) k ++;
nxt[i] = k;
}
k = ;
for (reg int i = ; i <= la ; i ++)
{
while(k and a[i] != b[k + ]) k = nxt[k];
if (b[k + ] == a[i]) k ++;
if (k == lb) End[i] = ;
}
int lst = -;
for (reg int i = ; i <= la ; i ++)
{
f[i] += f[i-];
if (End[i]) lst = i - lb + ;
if (lst != -) f[i] += sum[lst - ] + lst;
if (f[i] >= mod) f[i] -= mod;
sum[i] = sum[i-] + f[i];
if (sum[i] >= mod) sum[i] -= mod;
}
cout << f[la] << endl;
return ;
}

[CF494B] Obsessive String的更多相关文章

  1. [Codeforces-div.1 494B]Obsessive String

    [CF-div.1 B]Obsessive String 题目大意 两个字符串\(S,T\),求划分方案数使得一个集合中两两划分不相交且划分都包含字符串\(T\) 试题分析 kmp先求出那个位置匹配. ...

  2. [codeforces494B]Obsessive String

    [codeforces494B]Obsessive String 试题描述 Hamed has recently found a string t and suddenly became quite ...

  3. Codeforces Round #282 (Div. 1)B. Obsessive String KMP+DP

    B. Obsessive String   Hamed has recently found a string t and suddenly became quite fond of it. He s ...

  4. CodeForces 494B Obsessive String ——(字符串DP+KMP)

    这题的题意就很晦涩.题意是:问有多少种方法,把字符串s划分成不重叠的子串(可以不使用完s的所有字符,但是这些子串必须不重叠),使得t串是所有这些新串的子串.譬如第一个样例,"ababa&qu ...

  5. Codeforces Round #282 Div.1 B Obsessive String --DP

    题意: 给两个串S,T,问能找出多少的S的(a1,b1)(a2,b2)..(ak,bk),使Sa1---Sb1,...Sak---Sbk都包含子串T,其中k>=1,且(a1,b1)...(ak, ...

  6. Codeforces 494B Obsessive String

    http://www.codeforces.com/problemset/problem/494/B 题意:给出两个串S,T,求有几种将S分成若干个子串,满足T都是这若干个子串的子串. 思路:f[n] ...

  7. CF 494B 【Obsessive String】

    很有趣的一道题 这道题提议很难懂,其实就是让你求合法的集合数目.合法的集合定义为: 1.集合中的所有串都是s的子串,且互不重叠 2.集合中的所有串都含有子串t. 看到网上很多题解说要用kmp,但我就不 ...

  8. 【codeforces #282(div 1)】AB题解

    A. Treasure time limit per test 2 seconds memory limit per test 256 megabytes input standard input o ...

  9. DP × KMP

    几道用到KMP的DP题: hdu 5763    hdu 3689    hdu 3336    codeforces 494B    codevs 3945 关于KMP的nx数组: 如果在本文中看见 ...

随机推荐

  1. mybatis-geneator

    一.简介 在使用mybatis时我们需要重复的去创建pojo类.mapper文件以及dao类并且需要配置它们之间的依赖关系,比较麻烦且做了大量的重复工作,mybatis官方也发现了这个问题, 因此给我 ...

  2. uni-app开发微信小程序的几天时间

    人只有在不断的学习,才能不断的给自己充电,如果我们停止了学习,就像人没有了血脉,就会死亡,近来学习比较忙,压力比较大,整天面对着电脑,敲击代码,从中虽然收获了快乐,但是换来的确实身体的伤痛,最近虽然自 ...

  3. uboot学习之uboot.bin的运行流程

    上篇博客:http://www.cnblogs.com/yeqluofwupheng/p/7347925.html 讲到uboot-spl的工作流程,接下来简述一下uboot.bin的工作流程,这对应 ...

  4. Jenkins 结合 Docker 为 .NET Core 项目实现低配版的 CI&CD

    随着项目的不断增多,最开始单体项目手动执行 docker build 命令,手动发布项目就不再适用了.一两个项目可能还吃得消,10 多个项目每天让你构建一次还是够呛.即便你的项目少,每次花费在发布上面 ...

  5. 性能测试之 Gatling

    在应用程序上线之前,有多少人做过性能测试? 估计大部分开发者更多地关注功能测试,并且会提供一些单元测试和集成测试的用例.然而,有时候性能漏洞导致的影响比未发现的业务漏洞更严重,因为性能漏洞影响的是整个 ...

  6. jQuery常用方法(二)-事件

    ready(fn); $(document).ready()注意在body中没有onload事件,否则该函数不能执行.在每个页面中可以 有很多个函数被加载执行,按照fn的顺序来执行. bind( ty ...

  7. .Net Core 商城微服务项目系列(十三):搭建Log4net+ELK+Kafka日志框架

    之前是使用NLog直接将日志发送到了ELK,本篇将会使用Docker搭建ELK和kafka,同时替换NLog为Log4net. 一.搭建kafka 1.拉取镜像 //下载zookeeper docke ...

  8. abp(net core)+easyui+efcore实现仓储管理系统——EasyUI之货物管理三 (二十一)

    abp(net core)+easyui+efcore实现仓储管理系统目录 abp(net core)+easyui+efcore实现仓储管理系统——ABP总体介绍(一) abp(net core)+ ...

  9. [LeetCode] 1108. Defanging an IP Address

    Description Given a valid (IPv4) IP address, return a defanged version of that IP address. A defange ...

  10. Linux 下复制整个文件夹的命令

    在 Linux 下复制整个文件夹,包括它的子文件夹及其隐藏文件的方法是: cp -r /etc/skel /home/user 或者 mkdir /home/<new_user> cp - ...