本章内容:

1.什么是GIL

2.GIL带来的问题

3.为什么需要GIL

4.关于GIL的性能讨论

5.自定义的线程互斥锁与GIL的区别

6.线程池与进程池

7.同步异步,阻塞非阻塞

一.什么是GIL

官方解释:
'''
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple
native threads from executing Python bytecodes at once. This lock is necessary mainly
because CPython’s memory management is not thread-safe. (However, since the GIL
exists, other features have grown to depend on the guarantees that it enforces.)
''' 释义:
在CPython中,这个全局解释器锁,也称为GIL,是一个互斥锁,防止多个线程在同一时间执行Python字节码,这个锁是非常重要的,因为CPython的内存管理非线程安全的,很多其他的特性依赖于GIL,所以即使它影响了程序效率也无法将其直接去除 总结:
在CPython中,GIL会把线程的并行变成串行,导致效率降低

需要知道的是,解释器并不只有CPython,还有PyPy,JPython等等。GIL也仅存在与CPython中,这并不是Python这门语言的问题,而是CPython解释器的问题!

二.GIL带来的问题

首先必须明确执行一个py文件,分为三个步骤

  1. 从硬盘加载Python解释器到内存
  2. 从硬盘加载py文件到内存
  3. 解释器解析py文件内容,交给CPU执行

其次需要明确的是每当执行一个py文件,就会立即启动一个python解释器,

当执行test.py时其内存结构如下:

GIL,叫做全局解释器锁,加到了解释器上,并且是一把互斥锁,那么这把锁对应用程序到底有什么影响?

这就需要知道解释器的作用,以及解释器与应用程序代码之间的关系

py文件中的内容本质都是字符串,只有在被解释器解释时,才具备语法意义,解释器会将py代码翻译为当前系统支持的指令交给系统执行。

当进程中仅存在一条线程时,GIL锁的存在没有不会有任何影响,但是如果进程中有多个线程时,GIL锁就开始发挥作用了。如下图:

开启子线程时,给子线程指定了一个target表示该子线程要处理的任务即要执行的代码。代码要执行则必须交由解释器,即多个线程之间就需要共享解释器,为了避免共享带来的数据竞争问题,于是就给解释器加上了互斥锁!

由于互斥锁的特性,程序串行,保证数据安全,降低执行效率,GIL将使得程序整体效率降低!

三.为什么需要GIL

GIL与GC的孽缘

在使用Python中进行编程时,程序员无需参与内存的管理工作,这是因为Python有自带的内存管理机制,简称GC。那么GC与GIL有什么关联?

要搞清楚这个问题,需先了解GC的工作原理,Python中内存管理使用的是引用计数,每个数会被加上一个整型的计数器,表示这个数据被引用的次数,当这个整数变为0时则表示该数据已经没有人使用,成了垃圾数据。

当内存占用达到某个阈值时,GC会将其他线程挂起,然后执行垃圾清理操作,垃圾清理也是一串代码,也就需要一条线程来执行。

示例代码:

from threading import  Thread
def task():
a = 10
print(a) # 开启三个子线程执行task函数
Thread(target=task).start()
Thread(target=task).start()
Thread(target=task).start()

上述代码内存结构如下:

通过上图可以看出,GC与其他线程都在竞争解释器的执行权,而CPU何时切换,以及切换到哪个线程都是无法预支的,这样一来就造成了竞争问题,假设线程1正在定义变量a=10,而定义变量第一步会先到到内存中申请空间把10存进去,第二步将10的内存地址与变量名a进行绑定,如果在执行完第一步后,CPU切换到了GC线程,GC线程发现10的地址引用计数为0则将其当成垃圾进行了清理,等CPU再次切换到线程1时,刚刚保存的数据10已经被清理掉了,导致无法正常定义变量。

当然其他一些涉及到内存的操作同样可能产生问题问题,为了避免GC与其他线程竞争解释器带来的问题,CPython简单粗暴的给解释器加了互斥锁,如下图所示:

有了GIL后,多个线程将不可能在同一时间使用解释器,从而保证了解释器的数据安全。

GIL的加锁与解锁时机

加锁的时机:在调用解释器时立即加锁

解锁时机:

  • 当前线程遇到了IO时释放
  • 当前线程执行时间超过设定值时释放

四.关于GIL的性能讨论

GIL的优点:

  • 保证了CPython中的内存管理是线程安全的

GIL的缺点:

  • 互斥锁的特性使得多线程无法并行

但我们并不能因此就否认Python这门语言,其原因如下:

  1. GIL仅仅在CPython解释器中存在,在其他的解释器中没有,并不是Python这门语言的缺点

  2. 在单核处理器下,多线程之间本来就无法真正的并行执行

  3. 在多核处理下,运算效率的确是比单核处理器高,但是要知道现代应用程序多数都是基于网络的(qq,微信,爬虫,浏览器等等),CPU的运行效率是无法决定网络速度的,而网络的速度是远远比不上处理器的运算速度,则意味着每次处理器在执行运算前都需要等待网络IO,这样一来多核优势也就没有那么明显了

    举个例子:

    任务1 从网络上下载一个网页,等待网络IO的时间为1分钟,解析网页数据花费,1秒钟

    任务2 将用户输入数据并将其转换为大写,等待用户输入时间为1分钟,转换为大写花费,1秒钟

    单核CPU下:1.开启第一个任务后进入等待。2.切换到第二个任务也进入了等待。一分钟后解析网页数据花费1秒解析完成切换到第二个任务,转换为大写花费1秒,那么总耗时为:1分+1秒+1秒 = 1分钟2秒

    多核CPU下:1.CPU1处理第一个任务等待1分钟,解析花费1秒钟。1.CPU2处理第二个任务等待1分钟,转换大写花费1秒钟。由于两个任务是并行执行的所以总的执行时间为1分钟+1秒钟 = 1分钟1秒

    可以发现,多核CPU对于总的执行时间提升只有1秒,但是这边的1秒实际上是夸张了,转换大写操作不可能需要1秒,时间非常短!

    上面的两个任务都是需要大量IO时间的,这样的任务称之为IO密集型,与之对应的是计算密集型即IO操作较少大部分都是计算任务。

    对于计算密集型任务,Python多线程的确比不上其他语言!为了解决这个弊端,Python推出了多进程技术,可以良好的利用多核处理器来完成计算密集任务。

    总结:

    1.单核下无论是IO密集还是计算密集GIL都不会产生任何影响

    2.多核下对于IO密集任务,GIL会有细微的影响,基本可以忽略

    3.Cpython中IO密集任务应该采用多线程,计算密集型应该采用多进程

另外:之所以广泛采用CPython解释器,就是因为大量的应用程序都是IO密集型的,还有另一个很重要的原因是CPython可以无缝对接各种C语言实现的库,这对于一些数学计算相关的应用程序而言非常的happy,直接就能使用各种现成的算法

计算密集型的效率测试

from multiprocessing import Process
from threading import Thread
import time def task():
for i in range(10000000):
i += 1 if __name__ == '__main__':
start_time = time.time()
# 多进程
# p1 = Process(target=task)
# p2 = Process(target=task)
# p3 = Process(target=task)
# p4 = Process(target=task) # 多线程
p1 = Thread(target=task)
p2 = Thread(target=task)
p3 = Thread(target=task)
p4 = Thread(target=task) p1.start()
p2.start()
p3.start()
p4.start() p1.join()
p2.join()
p3.join()
p4.join() print(time.time()-start_time)

IO密集型的效率测试

from multiprocessing import Process
from threading import Thread
import time
def task():
with open("test.txt",encoding="utf-8") as f:
f.read()
if __name__ == '__main__':
start_time = time.time()
# 多进程
# p1 = Process(target=task)
# p2 = Process(target=task)
# p3 = Process(target=task)
# p4 = Process(target=task) # 多线程
p1 = Thread(target=task)
p2 = Thread(target=task)
p3 = Thread(target=task)
p4 = Thread(target=task) p1.start()
p2.start()
p3.start()
p4.start() p1.join()
p2.join()
p3.join()
p4.join() print(time.time()-start_time)

五.自定义的线程锁与GIL的区别

GIL保护的是解释器级别的数据安全,比如对象的引用计数,垃圾分代数据等等,具体参考垃圾回收机制详解。

对于程序中自己定义的数据则没有任何的保护效果,这一点在没有介绍GIL前我们就已经知道了,所以当程序中出现了共享自定义的数据时就要自己加锁,如下例:

from threading import Thread,Lock
import time a = 0
def task():
global a
temp = a
time.sleep(0.01)
a = temp + 1 t1 = Thread(target=task)
t2 = Thread(target=task)
t1.start()
t2.start()
t1.join()
t2.join()
print(a)

过程分析:

1.线程1获得CPU执行权,并获取GIL锁执行代码 ,得到a的值为0后进入睡眠,释放CPU并释放GIL

2.线程2获得CPU执行权,并获取GIL锁执行代码 ,得到a的值为0后进入睡眠,释放CPU并释放GIL

3.线程1睡醒后获得CPU执行权,并获取GIL执行代码 ,将temp的值0+1后赋给a,执行完毕释放CPU并释放GIL

4.线程2睡醒后获得CPU执行权,并获取GIL执行代码 ,将temp的值0+1后赋给a,执行完毕释放CPU并释放GIL,最后a的值也就是1

之所以出现问题是因为两个线程在并发的执行同一段代码,解决方案就是加锁!

from threading import Thread,Lock
import time lock = Lock()
a = 0
def task():
global a
lock.acquire()
temp = a
time.sleep(0.01)
a = temp + 1
lock.release() t1 = Thread(target=task)
t2 = Thread(target=task)
t1.start()
t2.start()
t1.join()
t2.join()
print(a)

过程分析:

1.线程1获得CPU执行权,并获取GIL锁执行代码 ,得到a的值为0后进入睡眠,释放CPU并释放GIL,不释放lock

2.线程2获得CPU执行权,并获取GIL锁,尝试获取lock失败,无法执行,释放CPU并释放GIL

3.线程1睡醒后获得CPU执行权,并获取GIL继续执行代码 ,将temp的值0+1后赋给a,执行完毕释放CPU释放GIL,释放lock,此时a的值为1

4.线程2获得CPU执行权,获取GIL锁,尝试获取lock成功,执行代码,得到a的值为1后进入睡眠,释放CPU并释放GIL,不释放lock

5.线程2睡醒后获得CPU执行权,获取GIL继续执行代码 ,将temp的值1+1后赋给a,执行完毕释放CPU释放GIL,释放lock,此时a的值为2

六:进程池与线程池

什么是进程/线程池?

池表示一个容器,本质上就是一个存储进程或线程的列表

池子中存储线程还是进程?

如果是IO密集型任务使用线程池,如果是计算密集任务则使用进程池

为什么需要进程/线程池?

在很多情况下需要控制进程或线程的数量在一个合理的范围,例如TCP程序中,一个客户端对应一个线程,虽然线程的开销小,但肯定不能无限的开,否则系统资源迟早被耗尽,解决的办法就是控制线程的数量。

线程/进程池不仅帮我们控制线程/进程的数量,还帮我们完成了线程/进程的创建,销毁,以及任务的分配

进程池的使用:

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import time,os # 创建进程池,指定最大进程数为3,此时不会创建进程,不指定数量时,默认为CPU和核数
pool = ProcessPoolExecutor(3) def task():
time.sleep(1)
print(os.getpid(),"working..") if __name__ == '__main__':
for i in range(10):
pool.submit(task) # 提交任务时立即创建进程 # 任务执行完成后也不会立即销毁进程
time.sleep(2) for i in range(10):
pool.submit(task) #再有新任务是 直接使用之前已经创建好的进程来执行

线程池的使用:

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from threading import current_thread,active_count
import time,os # 创建进程池,指定最大线程数为3,此时不会创建线程,不指定数量时,默认为CPU和核数*5
pool = ThreadPoolExecutor(3)
print(active_count()) # 只有一个主线 def task():
time.sleep(1)
print(current_thread().name,"working..") if __name__ == '__main__':
for i in range(10):
pool.submit(task) # 第一次提交任务时立即创建线程 # 任务执行完成后也不会立即销毁
time.sleep(2) for i in range(10):
pool.submit(task) #再有新任务时 直接使用之前已经创建好的线程来执行

案例:TCP中的应用

首先要明确,TCP是IO密集型,应该使用线程池

七.同步异步-阻塞非阻塞

同步异步-阻塞非阻塞,经常会被程序员提及,并且概念非常容易混淆!

阻塞非阻塞指的是程序的运行状态

阻塞:当程序执行过程中遇到了IO操作,在执行IO操作时,程序无法继续执行其他代码,称为阻塞!

非阻塞:程序在正常运行没有遇到IO操作,或者通过某种方式使程序即时遇到了也不会停在原地,还可以执行其他操作,以提高CPU的占用率

同步-异步 指的是提交任务的方式

同步指调用:发起任务后必须在原地等待任务执行完成,才能继续执行

异步指调用:发起任务后必须不用等待任务执行,可以立即开启执行其他操作

同步会有等待的效果但是这和阻塞是完全不同的,阻塞时程序会被剥夺CPU执行权,而同步调用则不会!

很明显异步调用效率更高,但是任务的执行结果如何获取呢?

程序中的异步调用并获取结果方式1:

from concurrent.futures import ThreadPoolExecutor
from threading import current_thread
import time pool = ThreadPoolExecutor(3)
def task(i):
time.sleep(0.01)
print(current_thread().name,"working..")
return i ** i if __name__ == '__main__':
objs = []
for i in range(3):
res_obj = pool.submit(task,i) # 异步方式提交任务# 会返回一个对象用于表示任务结果
objs.append(res_obj) # 该函数默认是阻塞的 会等待池子中所有任务执行结束后执行
pool.shutdown(wait=True) # 从结果对象中取出执行结果
for res_obj in objs:
print(res_obj.result())
print("over")

程序中的异步调用并获取结果方式2:

from concurrent.futures import ThreadPoolExecutor
from threading import current_thread
import time pool = ThreadPoolExecutor(3)
def task(i):
time.sleep(0.01)
print(current_thread().name,"working..")
return i ** i if __name__ == '__main__':
objs = []
for i in range(3):
res_obj = pool.submit(task,i) # 会返回一个对象用于表示任务结果
print(res_obj.result()) #result是同步的一旦调用就必须等待 任务执行完成拿到结果
print("over")

8.异步回调

什么是异步回调

异步回调指的是:在发起一个异步任务的同时指定一个函数,在异步任务完成时会自动的调用这个函数

为什么需要异步回调

之前在使用线程池或进程池提交任务时,如果想要处理任务的执行结果则必须调用result函数或是shutdown函数,而它们都是是阻塞的,会等到任务执行完毕后才能继续执行,这样一来在这个等待过程中就无法执行其他任务,降低了效率,所以需要一种方案,即保证解析结果的线程不用等待,又能保证数据能够及时被解析,该方案就是异步回调

异步回调的使用

先来看一个案例:

在编写爬虫程序时,通常都是两个步骤:

​ 1.从服务器下载一个网页文件

​ 2.读取并且解析文件内容,提取有用的数据

按照以上流程可以编写一个简单的爬虫程序

要请求网页数据则需要使用到第三方的请求库requests可以通过pip或是pycharm来安装,在pycharm中点击settings->解释器->点击+号->搜索requests->安装

import requests,re,os,random,time
from concurrent.futures import ProcessPoolExecutor def get_data(url):
print("%s 正在请求%s" % (os.getpid(),url))
time.sleep(random.randint(1,2))
response = requests.get(url)
print(os.getpid(),"请求成功 数据长度",len(response.content))
#parser(response) # 3.直接调用解析方法 哪个进程请求完成就那个进程解析数据 强行使两个操作耦合到一起了
return response def parser(obj):
data = obj.result()
htm = data.content.decode("utf-8")
ls = re.findall("href=.*?com",htm)
print(os.getpid(),"解析成功",len(ls),"个链接") if __name__ == '__main__':
pool = ProcessPoolExecutor(3)
urls = ["https://www.baidu.com",
"https://www.sina.com",
"https://www.python.org",
"https://www.tmall.com",
"https://www.mysql.com",
"https://www.apple.com.cn"]
# objs = []
for url in urls:
# res = pool.submit(get_data,url).result() # 1.同步的方式获取结果 将导致所有请求任务不能并发
# parser(res) obj = pool.submit(get_data,url) #
obj.add_done_callback(parser) # 4.使用异步回调,保证了数据可以被及时处理,并且请求和解析解开了耦合
# objs.append(obj) # pool.shutdown() # 2.等待所有任务执行结束在统一的解析
# for obj in objs:
# res = obj.result()
# parser(res)
# 1.请求任务可以并发 但是结果不能被及时解析 必须等所有请求完成才能解析
# 2.解析任务变成了串行,

总结:异步回调使用方法就是在提交任务后得到一个Futures对象,调用对象的add_done_callback来指定一个回调函数,

如果把任务比喻为烧水,没有回调时就只能守着水壶等待水开,有了回调相当于换了一个会响的水壶,烧水期间可用作其他的事情,等待水开了水壶会自动发出声音,这时候再回来处理。水壶自动发出声音就是回调。

注意:

  1. 使用进程池时,回调函数都是主进程中执行执行
  2. 使用线程池时,回调函数的执行线程是不确定的,哪个线程空闲就交给哪个线程
  3. 回调函数默认接收一个参数就是这个任务对象自己,再通过对象的result函数来获取任务的处理结果

9.线程队列

1.Queue 先进先出队列

与多进程中的Queue使用方式完全相同,区别仅仅是不能被多进程共享。

q =  Queue(3)
q.put(1)
q.put(2)
q.put(3)
print(q.get(timeout=1))
print(q.get(timeout=1))
print(q.get(timeout=1))

2.LifoQueue 后进先出队列

该队列可以模拟堆栈,实现先进后出,后进先出

lq = LifoQueue()

lq.put(1)
lq.put(2)
lq.put(3) print(lq.get())
print(lq.get())
print(lq.get())

3.PriorityQueue 优先级队列

该队列可以为每个元素指定一个优先级,这个优先级可以是数字,字符串或其他类型,但是必须是可以比较大小的类型,取出数据时会按照从小到大的顺序取出

pq = PriorityQueue()
# 数字优先级
pq.put((10,"a"))
pq.put((11,"a"))
pq.put((-11111,"a")) print(pq.get())
print(pq.get())
print(pq.get())
# 字符串优先级
pq.put(("b","a"))
pq.put(("c","a"))
pq.put(("a","a")) print(pq.get())
print(pq.get())
print(pq.get())

10.线程事件Event

什么是事件

事件表示在某个时间发生了某个事情的通知信号,用于线程间协同工作。

因为不同线程之间是独立运行的状态不可预测,所以一个线程与另一个线程间的数据是不同步的,当一个线程需要利用另一个线程的状态来确定自己的下一步操作时,就必须保持线程间数据的同步,Event就可以实现线程间同步

Event介绍

Event象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行

可用方法:

event.isSet():返回event的状态值;
event.wait():将阻塞线程;知道event的状态为True
event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;
event.clear():恢复event的状态值为False。

使用案例:

# 在链接mysql服务器前必须保证mysql已经启动,而启动需要花费一些时间,所以客户端不能立即发起链接 需要等待msyql启动完成后立即发起链接
from threading import Event,Thread
import time boot = False
def start():
global boot
print("正正在启动服务器.....")
time.sleep(5)
print("服务器启动完成!")
boot = True def connect():
while True:
if boot:
print("链接成功")
break
else:
print("链接失败")
time.sleep(1) Thread(target=start).start()
Thread(target=connect).start()
Thread(target=connect).start()

使用Event改造后:

from threading import Event,Thread
import time e = Event()
def start():
global boot
print("正正在启动服务器.....")
time.sleep(3)
print("服务器启动完成!")
e.set() def connect():
e.wait()
print("链接成功") Thread(target=start).start()
Thread(target=connect).start()
Thread(target=connect).start()

增加需求,每次尝试链接等待1秒,尝试次数为3次

from threading import Event,Thread
import time e = Event()
def start():
global boot
print("正正在启动服务器.....")
time.sleep(5)
print("服务器启动完成!")
e.set() def connect():
for i in range(1,4):
print("第%s次尝试链接" % i)
e.wait(1)
if e.isSet():
print("链接成功")
break
else:
print("第%s次链接失败" % i)
else:
print("服务器未启动!") Thread(target=start).start()
Thread(target=connect).start()
# Thread(target=connect).start()

并发编程-多线程,GIL锁的更多相关文章

  1. 53_并发编程-线程-GIL锁

    一.GIL - 全局解释器锁   有了GIL的存在,同一时刻同一进程中只有一个线程被执行:由于线程不能使用cpu多核,可以开多个进程实现线程的并发,因为每个进程都会含有一个线程,每个进程都有自己的GI ...

  2. Android并发编程 多线程与锁

    该文章是一个系列文章,是本人在Android开发的漫漫长途上的一点感想和记录,如果能给各位看官带来一丝启发或者帮助,那真是极好的. 前言 前一篇Android并发编程开篇呢,主要是简单介绍一下线程以及 ...

  3. 并发编程: GIL锁、GIL与互斥锁区别、进程池与线程池的区别

    一.GIL 二.关于GIL性能的讨论 三.计算密集测试 四.IO密集测试 五.GIL与互斥锁 六.TCP客户端 七.进程池 八.进程什么时候算是空闲 九.线程池 一.GIL GIL Global In ...

  4. python 并发编程 多线程 GIL与Lock

    GIL与Lock Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要互斥锁lock? 锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据 GIT保证了 ...

  5. python 并发编程 多线程 GIL全局解释器锁基本概念

    首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念. 就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码. ...

  6. python全栈开发从入门到放弃之socket并发编程多线程GIL

    一 介绍 ''' 定义: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple nati ...

  7. python 并发编程 多线程 GIL与多线程

    GIL与多线程 有了GIL的存在,同一时刻同一进程中只有一个线程被执行 多进程可以利用多核,但是开销大,而python的多线程开销小,但却无法利用多核优势 1.cpu到底是用来做计算的,还是用来做I/ ...

  8. python 并发编程 多线程 互斥锁

    互斥锁 并行变成串行,牺牲效率 保证数据安全,实现局部串行 保护不同的数据,应该加不同的锁 现在一个进程 可以有多个线程 所有线程都共享进程的地址空间 实现数据共享 共享带来问题就会出现竞争 竞争就会 ...

  9. python 并发编程 多线程 目录

    线程理论 python 并发编程 多线程 开启线程的两种方式 python 并发编程 多线程与多进程的区别 python 并发编程 多线程 Thread对象的其他属性或方法 python 并发编程 多 ...

随机推荐

  1. SpringBoot SpringCloud 热部署 热加载 热调试

    疯狂创客圈 Java 高并发[ 亿级流量聊天室实战]实战系列 [博客园总入口 ] 架构师成长+面试必备之 高并发基础书籍 [Netty Zookeeper Redis 高并发实战 ] Crazy-Sp ...

  2. phper使用MySQL 针对千万级的大表要怎么优化?

    有需要学习交流的友人请加入交流群的咱们一起,群内都是1-7年的开发者,希望可以一起交流,探讨PHP,swoole这块的技术 或者有其他问题 也可以问,获取swoole或者php进阶相关资料私聊管理即可 ...

  3. 元类, pymysql

    元类, pymysql 一.元类 自定义元类 ''' 1.什么是元类? - 类的类就是type,其实type就是元类 2.元类的作用? 3.如何创建元类以及使用? ''' # # 1.一切皆对象 # ...

  4. styled-components:解决react的css无法作为组件私有样式的问题

    react中的css在一个文件中导入,是全局的,对其他组件标签都会有影响. 使用styled-components第三方模块来解决,并且styled-components还可以将标签和样式写到一起,作 ...

  5. 我用 Python 破解了同事的加密压缩包!

    ​ 作者 | 朱小五 又是一杯奶茶. 事情的经过是这样的: ​ ​ 又是奶茶,行吧快点开工,争取李大伟回来之前搞定 李大伟说是6位数字密码 那么我们可以利用python生成全部的六位数字密码 #生成从 ...

  6. 牛客集训 湖南省赛E题 Grid 动态开点线段树

    国庆牛客集训的题,正好准备好好训练线段树,想起来就补一下. 题意很简单,两种操作行合并或者列合并,每个操作后计算有多少个子块. 这题应该先推导公式,行操作或者列操作只有一种的时候,很简单,总数就是n* ...

  7. 【10分钟学Spring】:(二)一文搞懂spring依赖注入(DI)

    Spring最基础的特性就是创建bean.管理bean之间的依赖关系.下面通过具体实例演示该如何装配我们应用中的bean. Spring提供了三种主要的装配机制 在xml中进行显示的配置 在Java中 ...

  8. Java生鲜电商平台-优惠券功能设计与开发(小程序/APP)

    Java生鲜电商平台-优惠券功能设计与开发(小程序/APP) 说明:Java生鲜电商平台-优惠券功能设计与开发(小程序/APP) 目录 1.项目背景与需求分析 2.需求目的与功能点列表 3.业务逻辑 ...

  9. Kali Linux configuration "Ettercap"

    Xx_Instroduction Ettercap is a man-in-the-middle attack(MITM) tool,kali take this tool,so,use front ...

  10. 文本切换器(TextSwitcher)的功能与用法

    TextSwitcher继承了ViewSwitcher,因此它具有与ViewSwitcher相同的特征:可以在切换View组件时使用动画效果.与ImageSwitcher相似的是,使用TextSwit ...