Sumsets

直接翻译了

Descriptions

Farmer John 让奶牛们找一些数加起来等于一个给出的数N。但是奶牛们只会用2的整数幂。下面是凑出7的方式

1) 1+1+1+1+1+1+1 
2) 1+1+1+1+1+2 
3) 1+1+1+2+2 
4) 1+1+1+4 
5) 1+2+2+2 
6) 1+2+4

帮助FJ找到 N的分配数 (1 <= N <= 1,000,000).


Input

N


Output

排列方式总数。由于这个数可能很大,只需要保留最后9位


Sample Input

7

Sample Output

6

Hint

打表的会被系统自动识别判为WA

题目链接

https://vjudge.net/problem/POJ-2229

处理出2的幂次方的所有的数字,当做物品,每个物品次数不限,求凑出体积为N的方案数

类似完全背包,先枚举物品,再正序枚举体积,转移状态dp[i][j]表示前i件物品凑出的体积为j的方案数

dp[i][j] = dp[i - 1][j] + dp[i - 1][j - w[i]]

1<<i 相当于 2i

AC代码

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#define Mod 1000000007
#define eps 1e-6
#define ll long long
#define INF 0x3f3f3f3f
#define MEM(x,y) memset(x,y,sizeof(x))
#define Maxn 1000005
using namespace std;
int n;
int w[Maxn];
int cnt=;
int dp[Maxn];
int main()
{
scanf("%d",&n);
for(int i=;(<<i)<=n;i++)//构造所有物品
w[cnt++]=(<<i);
dp[]=;
for(int i=;i<cnt;i++)
for(int j=w[i];j<=n;j++)
dp[j]=(dp[j]+dp[j-w[i]])%;//取余 printf("%d\n",dp[n]);
return ;
}

【POJ - 2229】Sumsets(完全背包)的更多相关文章

  1. poj 2229 Sumsets 完全背包求方案总数

    Sumsets Description Farmer John commanded his cows to search for different sets of numbers that sum ...

  2. poj 2229 【完全背包dp】【递推dp】

    poj 2229 Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 21281   Accepted: 828 ...

  3. POJ 2229 Sumsets(技巧题, 背包变形)

    discuss 看到有人讲完全背包可以过, 假如我自己做的话, 也只能想到完全背包了 思路: 1. 当 n 为奇数时, f[n] = f[n-1], 因为只需在所有的序列前添加一个 1 即可, 所有的 ...

  4. poj -2229 Sumsets (dp)

    http://poj.org/problem?id=2229 题意很简单就是给你一个数n,然后选2的整数幂之和去组成这个数.问你不同方案数之和是多少? n很大,所以输出后9位即可. dp[i] 表示组 ...

  5. POJ 2229 Sumsets

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 11892   Accepted: 4782 Descrip ...

  6. poj 2229 Sumsets(dp)

    Sumsets Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 400000/200000K (Java/Other) Total Sub ...

  7. POJ 2229 sumset ( 完全背包 || 规律递推DP )

    题意 : 给出一个数 n ,问如果使用 2 的幂的和来组成这个数 n 有多少种不同的方案? 分析 :  完全背包解法 将问题抽象==>有重量分别为 2^0.2^1.2^2…2^k 的物品且每种物 ...

  8. poj 2229 Sumsets DP

    题意:给定一个整数N (1<= N <= 1000000),求出以 N为和 的式子有多少个,式子中的加数只能有2的幂次方组成 如5 : 1+1+1+1+1.1+1+1+2.1+2+2.1+ ...

  9. poj 2229 Sumsets(dp 或 数学)

    Description Farmer John commanded his cows to search . Here are the possible sets of numbers that su ...

  10. poj 2229 Sumsets(记录结果再利用的DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 将一个数N分解为2的幂之和共有几种分法? 题解: 定义dp[ i ]为数 i 的 ...

随机推荐

  1. POJ 3581:Sequence(后缀数组)

    题目链接 题意 给出n个数字的序列,现在让你分成三段,使得每一段翻转之后拼接起来的序列字典序最小.保证第一个数是序列中最大的数. 例如样例是{10, 1, 2, 3, 4},分成{1, 10}, {2 ...

  2. Python爬虫入门:爬取豆瓣电影TOP250

    一个很简单的爬虫. 从这里学习的,解释的挺好的:https://xlzd.me/2015/12/16/python-crawler-03 分享写这个代码用到了的学习的链接: BeautifulSoup ...

  3. 嵊州D2T3 玛利亚∙多斯普拉泽雷斯 完美配对

    嵊州D2T3 玛利亚∙多斯普拉泽雷斯 公墓一共有 n 个墓地,通过 n − 1 条通道相连. 每次,推销员可以在选择一个墓地推销给玛利亚. 但是,考虑很多的玛利亚会尽量否决这个提议. 她会选择一个墓地 ...

  4. Linux 安装 lanmp

    Lanmp介绍 lanmp一键安装包是wdlinux官网2010年底开始推出的web应用环境的快速简易安装包. 执行一个脚本,整个环境就安装完成就可使用,快速,方便易用,安全稳定 lanmp一键安装包 ...

  5. nodejs进阶(1)——npm使用技巧和最佳实践

    nodejs进阶教程,小白绕道!!! npm使用技巧和最佳实践 前提:请确保安装了node.js npm的最佳实践 npm install是最常见的npm cli命令,但是它还有更多能力!接下来你会了 ...

  6. 如何编写无须人工干预的shell脚本

    在使用基本的一些shell命令时,机器需要与人进行互动来确定命令的执行.比如 cp test.txt boo/test.txt,会询问是否覆盖?ssh远程登陆时,需要输入人工密码后,才可以继续执行ss ...

  7. python 写入excel数据而不改变excel原有样式

    目标:python写数据到excel,不改变原有样式 解决:在打开excel时,加入该参数formatting_info=True

  8. Excel催化剂100+大主题功能梳理导读

    Excel催化剂历经1年4个月的开发时间,终于荣登100+个大主题功能,完成数据领域的功能大矩阵,可以说在日常的数据处理及分析上,绝大部分的共性场景已经囊括其中,是数据工作者难得一遇的优秀作品之一.因 ...

  9. Shiro授权流程

    1,授权中涉及的一些概念      [1]授权:访问控制,即在应用中认证用户能否访问的系统资源(如一个页面,一个按钮等).      [2]资源:在Web应用中反应为用户可以访问的URL.       ...

  10. Git命令行之快速入门

    从头开始创建一个版本库,添加一些内容,然后管理一些修订版本. 有两种建立 Git版本库 的基础技术.第一:从头开始创建,用现有的内容填充它.第二:可以克隆一个已有的版本库.这里选择从一个空的版本库开始 ...