题意

设A(n) = n个1,问有多少对i,j使得\(A(i^j)\equiv0(modp)\)

题解

\(A(n) = \frac{10^n-1}{9}\)

当9与p互质时\(\frac{10^n-1}{9}\%p = (10^n-1)\cdot inv[9] \% p\)

移动项得到\(10^n\equiv1(modp)\)

由欧拉定理当\(gcd(10,p) = 1\)时\(10^{\varphi(p)}\equiv1(modp)\)

那么只要找到最小的d使得\(10^d\equiv1(modp)\)

问题就转化成求有多少对i,j使得\(i^j\equiv0(modp)\)

求d只需要枚举\(\varphi(p)\)的因子就好了

对d分解\(d = p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}\)

固定j,要使\(i^j\)是d的倍数,那么i一定是\(p_1^{\lceil\frac{k_1}{j}\rceil}p_2^{\lceil\frac{k_2}{j}\rceil}\cdots p_n^{\lceil\frac{k_n}{j}\rceil}\)的倍数

设\(g_j = p_1^{\lceil\frac{k_1}{j}\rceil}p_2^{\lceil\frac{k_2}{j}\rceil}\cdots p_n^{\lceil\frac{k_n}{j}\rceil}\),答案就是\(\sum_{j=1}^mg_j\),因为\(k_i\)不会超过30,

当j大于30时的\(g_j\)都一样就不用重复计算了

还有一个问题,当p=3时,因为9与3不互质,inv[9]不存在,式子\(\frac{10^n-1}{9}\%p \Longleftrightarrow (10^n-1)\cdot inv[9] \% p\)

就不成立,需要特判,此时d取3

代码

#include <bits/stdc++.h>

using namespace std;
const int mx = 3e5+10;
typedef long long ll; ll pow_mod(ll a, ll b, ll mod) {
ll ans = 1;
while (b > 0) {
if (b & 1) ans = ans * a % mod;
a = a * a % mod;
b /= 2;
}
return ans;
} ll pow_mod(ll a, ll b) {
ll ans = 1;
while (b > 0) {
if (b & 1) ans = ans * a;
a = a * a;
b /= 2;
}
return ans;
} vector <ll> pp, k; int main() {
int T;
scanf("%d", &T); while (T--) {
ll p, n, m, d;
scanf("%lld%lld%lld", &p, &n, &m);
if (p == 2 || p == 5) {
printf("0\n");
continue;
}
d = p-1;
for (ll i = 1; i*i <= (p-1); i++) {
if ((p-1) % i == 0) {
if (pow_mod(10, i, p) == 1) {
d = min(d, i);
}
if (pow_mod(10, (p-1)/i, p) == 1) {
d = min(d, (p-1)/i);
}
}
}
if (p == 3) d = 3;
pp.clear(); k.clear();
ll ans = 0;
for (ll i = 2; i*i <= d; i++) {
if (d % i == 0) {
int tmp = 0;
while (d % i == 0) {
tmp++;
d /= i;
}
k.push_back(tmp);
pp.push_back(i);
}
}
if (d > 1) pp.push_back(d), k.push_back(1); ll tmp = 1;
for (int i = 1; i <= min(30LL, m); i++) {
tmp = 1;
for (int j = 0; j < pp.size(); j++) {
ll b = k[j] / i;
if (k[j] % i != 0) b++;
tmp *= pow_mod(pp[j], b);
}
ans += n / tmp;
}
if (m > 30) ans += n / tmp * (m-30);
printf("%lld\n", ans);
}
return 0;
}

D-Big Integer_2019牛客暑期多校训练营(第三场)的更多相关文章

  1. 2019牛客暑期多校训练营(第三场)H题目

    题意:给你一个N×N的矩阵,求最大的子矩阵 满足子矩阵中最大值和最小值之差小于等于m. 思路:这题是求满足条件的最大子矩阵,毫无疑问要遍历所有矩阵,并判断矩阵是某满足这个条件,那么我们大致只要解决两个 ...

  2. 2019牛客暑期多校训练营(第三场)- F Planting Trees

    题目链接:https://ac.nowcoder.com/acm/contest/883/F 题意:给定n×n的矩阵,求最大子矩阵使得子矩阵中最大值和最小值的差值<=M. 思路:先看数据大小,注 ...

  3. 2019牛客暑期多校训练营(第三场) F.Planting Trees(单调队列)

    题意:给你一个n*n的高度矩阵 要你找到里面最大的矩阵且最大的高度差不能超过m 思路:我们首先枚举上下右边界,然后我们可以用单调队列维护一个最左的边界 然后计算最大值 时间复杂度为O(n*n*n) # ...

  4. 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)

    题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9:  对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可.     后者mod=1e9,5才 ...

  5. 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...

  6. 2019牛客暑期多校训练营(第一场) B Integration (数学)

    链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...

  7. 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...

  8. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  9. 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...

  10. [状态压缩,折半搜索] 2019牛客暑期多校训练营(第九场)Knapsack Cryptosystem

    链接:https://ac.nowcoder.com/acm/contest/889/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

随机推荐

  1. 记一次paramiko远程连接遇到的坑

    背景:工作中遇到了一个问题,需要用到windows向windows连接(文件传发)以及,linux向windows连接(文件传发)的需求. 自然而然会考虑到用paramiko,然而paramiko我用 ...

  2. 夯实Java基础(七)——Static关键字

    1.static介绍 static关键字一直是各大企业中面试常常会问到的问题,主要考察面试者的基础是否扎实,下面来介绍一下static关键字. Java中static表示“全局”或者“静态”的意思,可 ...

  3. JAVA面向对象面试题带答案(墙裂推荐)

    1) 在Java中,如果父类中的某些方法不包含任何逻辑,并且需要有子类重写,应该使用(c)关键字来申明父类的这些方法. a) Finalc b) Static c) Abstract d) Void2 ...

  4. vue之手把手教你写日历组件

    ---恢复内容开始--- 1.日历组件 1.分析功能:日历基本功能,点击事件改变日期,样式的改变 1.结构分析:html 1.分为上下两个部分 2.上面分为左按钮,中间内容展示,右按钮 下面分为周几展 ...

  5. cogs 1254. 最难的任务 Dijkstra + 重边处理

    1254. 最难的任务 ★   输入文件:hardest.in   输出文件:hardest.out   简单对比时间限制:1 s   内存限制:128 MB [题目描述] 这个真的很难.算出 123 ...

  6. JAVA基础知识(四):final关键字

    final关键字可以用于成员变量.本地变量.方法以及类. 2. final成员变量必须在声明的时候初始化或者在构造器中初始化,否则就会报编译错误. 3. 你不能够对final变量再次赋值. 4. 本地 ...

  7. zookeeper中的分布式一致性协议

    1. zookeeper中的一致性协议-ZAB协议 在深入了解ZK之前,相信很多同学都会认为ZK就是Paxos算法的一个实现.但事实上,ZK并没有完全采用Paxos算法,而是使用了一种称为ZooKee ...

  8. 分享我的GD32F450的IAP过程

    最近一个项目使用GD32F450VI+ESP8266需要做远程升级,基本参考正点原子IAP的那一章节,但是在GD32F450上却遇到了问题,无法跳转,然后使用正点原子的开发板stm32f429,以及s ...

  9. c#小灶——常量、变量和赋值

    常量 常量很好理解,和变量相对,就是不会变的量.比如,1就是常量,3.6也是常量,‘a’也是常量,“aaaaa”也是常量,只是不同类型.这些都是表面上一眼就看出来的常量,还有一种表面上看不出来的常量, ...

  10. XML学习(二)

    1.上期回忆 XML基础 1)XML的作用 1.1 作为软件配置文件 1.2 作为小型的"数据库" 2)XML语法(由w3c组织规定的) 标签: 标签名不能以数字开头,中间不能有空 ...