【CF1172E】Nauuo and ODT(Link-Cut Tree)

题面

CF

给你一棵树,每个节点有一个颜色。

定义一条路径的权值为路径上不同颜色的数量。求所有有向路径的权值和。

有\(m\)次单点颜色修改操作,每次修改之后输出答案。

题解

如果只有黑白两色,我们要求白色的贡献,那么我们可以把所有白色节点删去,那么答案就是每个黑色连通块的\(size\)平方和。考虑怎么动态维护这个东西。

要做的是,一开始我们的所有节点都是黑点,然后有若干次颜色取反操作,每次求黑色连通块的\(size^2\)的和。

然后拿\(LCT\)维护这个东西,在修改父子关系的时候修改答案。

因为维护的是子树和,所以要维护虚子树信息。

为了防止根节点被染黑不会发生父子关系变化,所以给根节点再额外加一个父亲就好了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 400400
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
namespace LCT
{
#define ls (t[x].ch[0])
#define rs (t[x].ch[1])
ll Num;
struct Node{int ff,ch[2],sz,vsz;ll ssz;ll Val(){return 1ll*sz*sz;}}t[MAX];
bool isroot(int x){return t[t[x].ff].ch[0]!=x&&t[t[x].ff].ch[1]!=x;}
void pushup(int x){t[x].sz=t[ls].sz+t[rs].sz+t[x].vsz+1;}
void rotate(int x)
{
int y=t[x].ff,z=t[y].ff;
int k=t[y].ch[1]==x;
if(!isroot(y))t[z].ch[t[z].ch[1]==y]=x;t[x].ff=z;
t[y].ch[k]=t[x].ch[k^1];t[t[x].ch[k^1]].ff=y;
t[x].ch[k^1]=y;t[y].ff=x;
pushup(y);pushup(x);
}
void Splay(int x)
{
while(!isroot(x))
{
int y=t[x].ff,z=t[y].ff;
if(!isroot(y))
(t[y].ch[0]==x)^(t[z].ch[0]==y)?rotate(x):rotate(y);
rotate(x);
}
}
void access(int x)
{
for(int y=0;x;y=x,x=t[x].ff)
{
Splay(x);
t[x].vsz-=t[y].sz;
t[x].vsz+=t[rs].sz;
t[x].ssz-=t[y].Val();
t[x].ssz+=t[rs].Val();
rs=y;pushup(x);
}
}
int findroot(int x){access(x);Splay(x);while(ls)x=ls;Splay(x);return x;}
void link(int x,int y)
{
Splay(x);
Num-=t[x].ssz+t[rs].Val();
int z=findroot(y);
access(x);Splay(z);
Num-=t[t[z].ch[1]].Val();
t[x].ff=y;Splay(y);
t[y].vsz+=t[x].sz;
t[y].ssz+=t[x].Val();
pushup(y);access(x);
Splay(z);
Num+=t[t[z].ch[1]].Val();
}
void cut(int x,int y)
{
access(x);Num+=t[x].ssz;
int z=findroot(y);
access(x);Splay(z);
Num-=t[t[z].ch[1]].Val();
Splay(x);
t[x].ch[0]=t[t[x].ch[0]].ff=0;
pushup(x);Splay(z);
Num+=t[t[z].ch[1]].Val();
}
}
using namespace LCT;
vector<int> E[MAX];
vector<pair<int,int> >V[MAX];
int n,m,c[MAX],fa[MAX],col[MAX];ll Ans[MAX];
void dfs(int u,int ff){fa[u]=ff;for(int v:E[u])if(v!=ff)dfs(v,u);}
int main()
{
freopen("a.in","r",stdin);
n=read();m=read();
for(int i=1;i<=n;++i)c[i]=read();
for(int i=1;i<n;++i)
{
int u=read(),v=read();
E[u].push_back(v);
E[v].push_back(u);
}
for(int i=1;i<=n;++i)V[c[i]].push_back(make_pair(0,i));
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
V[c[u]].push_back(make_pair(i,u));
c[u]=v;
V[c[u]].push_back(make_pair(i,u));
}
dfs(1,n+1);
for(int i=1;i<=n+1;++i)pushup(i);
for(int i=1;i<=n;++i)link(i,fa[i]);
for(int i=1;i<=n;++i)
{
ll lst=0;
for(auto a:V[i])
{
int u=a.second,t=a.first;
col[u]?link(u,fa[u]):cut(u,fa[u]);
col[u]^=1;
Ans[t]+=1ll*n*n-Num-lst;
lst=1ll*n*n-Num;
}
for(auto a:V[i])
{
int u=a.second;
if(col[u])link(u,fa[u]),col[u]^=1;
}
}
for(int i=1;i<=m;++i)Ans[i]+=Ans[i-1];
for(int i=0;i<=m;++i)printf("%lld\n",Ans[i]);
return 0;
}

【CF1172E】Nauuo and ODT(Link-Cut Tree)的更多相关文章

  1. LCT(Link Cut Tree)总结

    概念.性质简述 首先介绍一下链剖分的概念链剖分,是指一类对树的边进行轻重划分的操作,这样做的目的是为了减少某些链上的修改.查询等操作的复杂度.目前总共有三类:重链剖分,实链剖分和并不常见的长链剖分. ...

  2. 【cf600】E. Lomsat gelral(dsu on tree)

    传送门 题意: 求子树众数. 思路: \(dsu\ on\ tree\)模板题,用一个桶记录即可. 感觉\(dsu\ on\ tree\)这个算法的涉及真是巧妙呀,保留重链的信息,不断暴力轻边,并且不 ...

  3. SSAS系列——【08】多维数据(程序展现Cube)

    原文:SSAS系列--[08]多维数据(程序展现Cube) 1.引用DLL? 按照之前安装的MS SQLServer的步骤安装完成后,发现在新建的项目中“Add Reference”时居然找不到Mic ...

  4. 洛谷 P3377 【模板】左偏树(可并堆)

    洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...

  5. 【BZOJ2342】双倍回文(回文树)

    [BZOJ2342]双倍回文(回文树) 题面 BZOJ 题解 构建出回文树之后 在\(fail\)树上进行\(dp\) 如果一个点代表的回文串长度为\(4\)的倍数 并且存在长度为它的一半的回文后缀 ...

  6. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  7. 【BZOJ4372】烁烁的游戏(动态点分治)

    [BZOJ4372]烁烁的游戏(动态点分治) 题面 BZOJ 大意: 每次在一棵书上进行操作 1.将离某个点u的距离不超过d的点的权值加上w 2.询问单点权值 题解 这题和前面那一道震波几乎是一模一样 ...

  8. 【BZOJ1013】球形空间产生器(高斯消元)

    [BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...

  9. 【LightOJ1370】Bi-shoe and Phi-shoe(欧拉函数)

    [LightOJ1370]Bi-shoe and Phi-shoe(欧拉函数) 题面 Vjudge 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. 题解 首先 ...

随机推荐

  1. faster-rcnn训练自己数据+测试

    准备使用faster-rcnn进行检测实验.同时笔者也做了mask-rcnn,yolo-v3,ssd的实验,并进行对比. window下使用faster-rcnn  https://blog.csdn ...

  2. 解决python安装第三方库超时问题

    这里说明一下,配置文件中的url还可以换成下面的URL 阿里云 http://mirrors.aliyun.com/pypi/simple/ 中国科技大学 https://pypi.mirrors.u ...

  3. win10禁止自动更新的终极方法(亲测有效)

    想必用过win10的朋友对其自动更新一定不会陌生,并且深恶痛绝,    有时正专注做一件事,突然就开始自动更新,被杀个措手不及,而且更新时间真的太久了,尤其最近更新频繁,真是伤脑筋,    期间也尝试 ...

  4. 微信小程序新服务消息推送 —— 订阅消息

    微信团队前不久公测了「订阅消息」,原有的小程序模板消息接口将于 2020 年 1 月 10 日下线,届时将无法发送模板消息.「订阅消息」将完全替代「模板消息」,这两天得空测试了一波. 1.下发权限机制 ...

  5. JavaScript 是如何运行的?

    摘要: 理解JS执行原理. 原文:JavaScript 是如何运行的? 作者:hengg Fundebug经授权转载,版权归原作者所有. 什么是JavaScript? 我们来确认一下JavaScrip ...

  6. PHP删除数组中重复的元素

    array_unique($arr): //删除重复元素 $arr = [1,2,3,0,1]; echo '<pre>'; var_dump($arr); $arr = array_un ...

  7. python-初始网络编程

     一.服务端和客户端 BS架构 (腾讯通软件:server+client) CS架构 (web网站) C/S架构与socket的关系: 我们学习socket就是为了完成C/S架构的开发 二.OSI七层 ...

  8. webpack打包 The 'mode' option has not been set, webpack will fallback to

    webpack 打包报错 The 'mode' option has not been set, webpack will fallback to 'production' for,Module no ...

  9. 2-2 远程管理命令-网卡和IP地址的概念

    02.查看或配置网卡信息 序号 命令 对应英文 作用 01 ifconfig configure a network interface 查看/配置计算机当前的网卡配置信息 02 ping ip地址 ...

  10. eNSP仿真软件之VLAN基础配置及Access接口

    ★Access接口是交换机上用来连接用户主机的接口. 实验内容: 实验步骤: (1)      打开仿真软件eNSP,新建拓扑.根据实验内容建立如下实验拓扑图. (2)      按照如下的编址表对每 ...