在前面源码剖析介绍中,spark 源码分析之二 -- SparkContext 的初始化过程 中的SparkEnv和 spark 源码分析之四 -- TaskScheduler的创建和启动过程 中的ClientApp启动过程中,都涉及到了Spark的内置RPC的知识。本篇专门把RPC 拿出来剖析一下。

因为RPC 在 Spark 中内容虽然不多,但理清楚还是花费很多精力的,计划每天只剖析一小部分,等剖析完毕,会专门有一篇总结性的文章出来。

本篇作为RPC分析开篇,主要剖析了NettyRpcEnv创建的过程。

Spark Rpc使用示例

我们以 org.apache.spark.deploy.ClientApp#start 方法中的调用API创建 RPC 的过程入口。

// 1. 创建 RPC Environment
val rpcEnv = RpcEnv.create("driverClient", Utils.localHostName(), 0, conf, new SecurityManager(conf))

创建NettyRpcEnv

如下是创建NettyRpcEnv的时序图(画的不好看,见谅):

RpcEnv是scala 的object伴生对象(本质上是一个java 单例对象),去调用NettyRpcEnvFactory去创建 NettyRpcEnv 对象,序列化使用的是java序列化内建的方式,然后调用Utils 类重试启动Server。启动成功后返回给用户。

org.apache.spark.rpc.netty.NettyRpcEnv#startServer 代码如下:

 def startServer(bindAddress: String, port: Int): Unit = {
val bootstraps: java.util.List[TransportServerBootstrap] =
if (securityManager.isAuthenticationEnabled()) {
java.util.Arrays.asList(new AuthServerBootstrap(transportConf, securityManager))
} else {
java.util.Collections.emptyList()
}
server = transportContext.createServer(bindAddress, port, bootstraps)
dispatcher.registerRpcEndpoint(
RpcEndpointVerifier.NAME, new RpcEndpointVerifier(this, dispatcher))
}

在TransportServer构造过程中调用了init方法。org.apache.spark.network.server.TransportServer#init 源码如下:

 private void init(String hostToBind, int portToBind) {

   IOMode ioMode = IOMode.valueOf(conf.ioMode());
EventLoopGroup bossGroup =
NettyUtils.createEventLoop(ioMode, conf.serverThreads(), conf.getModuleName() + "-server");
EventLoopGroup workerGroup = bossGroup; PooledByteBufAllocator allocator = NettyUtils.createPooledByteBufAllocator(
conf.preferDirectBufs(), true /* allowCache */, conf.serverThreads()); bootstrap = new ServerBootstrap()
.group(bossGroup, workerGroup)
.channel(NettyUtils.getServerChannelClass(ioMode))
.option(ChannelOption.ALLOCATOR, allocator)
.option(ChannelOption.SO_REUSEADDR, !SystemUtils.IS_OS_WINDOWS)
.childOption(ChannelOption.ALLOCATOR, allocator); this.metrics = new NettyMemoryMetrics(
allocator, conf.getModuleName() + "-server", conf); if (conf.backLog() > 0) {
bootstrap.option(ChannelOption.SO_BACKLOG, conf.backLog());
} if (conf.receiveBuf() > 0) {
bootstrap.childOption(ChannelOption.SO_RCVBUF, conf.receiveBuf());
} if (conf.sendBuf() > 0) {
bootstrap.childOption(ChannelOption.SO_SNDBUF, conf.sendBuf());
} bootstrap.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) {
RpcHandler rpcHandler = appRpcHandler;
for (TransportServerBootstrap bootstrap : bootstraps) {
rpcHandler = bootstrap.doBootstrap(ch, rpcHandler);
}
context.initializePipeline(ch, rpcHandler);
}
}); InetSocketAddress address = hostToBind == null ?
new InetSocketAddress(portToBind): new InetSocketAddress(hostToBind, portToBind);
channelFuture = bootstrap.bind(address);
channelFuture.syncUninterruptibly(); port = ((InetSocketAddress) channelFuture.channel().localAddress()).getPort();
logger.debug("Shuffle server started on port: {}", port);
}

主要功能是:调用netty API 初始化 nettyServer。

org.apache.spark.rpc.netty.Dispatcher#registerRpcEndpoint的源码如下:

 def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {
val addr = RpcEndpointAddress(nettyEnv.address, name)
val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)
synchronized {
if (stopped) {
throw new IllegalStateException("RpcEnv has been stopped")
}
if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {
throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")
}
val data = endpoints.get(name)
endpointRefs.put(data.endpoint, data.ref)
receivers.offer(data) // for the OnStart message
}
endpointRef
}

EndpointData 在初始化过程中会放入 OnStart 消息。
在 Inbox 的 process 中,有如下代码:

 case OnStart =>
endpoint.onStart()
if (!endpoint.isInstanceOf[ThreadSafeRpcEndpoint]) {
inbox.synchronized {
if (!stopped) {
enableConcurrent = true
}
}
}

调用 endpoint 的 onStart 方法和 初始化 是否支持并发处理模式。endpoint 指的是 RpcEndpointVerifier, 其 onStart 方法如下:

 /**
* Invoked before [[RpcEndpoint]] starts to handle any message.
*/
def onStart(): Unit = {
// By default, do nothing.
}

即不做任何事情,直接返回,至此初始化NettyRPCEnv 流程就剖析完。伴生对象RpcEnv调用netty rpc 工厂创建NettyRpcEnv 对象,然后使用重试机制启动TransportServer,然后NettyRpcEnv注册RpcEndpointVerifier

到Dispatcher。最终返回 NettyRpcEnv 给API调用端,NettyRpcEnv 创建成功。在这里,Dispatcher 和 TransportServer 等组件暂不做深入了解,后续会一一剖析。

spark 源码分析之五 -- Spark内置RPC机制剖析之一创建NettyRpcEnv的更多相关文章

  1. spark 源码分析之十二 -- Spark内置RPC机制剖析之八Spark RPC总结

    在spark 源码分析之五 -- Spark内置RPC机制剖析之一创建NettyRpcEnv中,剖析了NettyRpcEnv的创建过程. Dispatcher.NettyStreamManager.T ...

  2. spark 源码分析之六--Spark RPC剖析之Dispatcher和Inbox、Outbox剖析

    在上篇 spark 源码分析之五 -- Spark内置RPC机制剖析之一创建NettyRPCEnv 中,涉及到了Diapatcher 内容,未做过多的剖析.本篇来剖析一下它的工作原理. Dispatc ...

  3. Spark源码分析之Spark Shell(下)

    继上次的Spark-shell脚本源码分析,还剩下后面半段.由于上次涉及了不少shell的基本内容,因此就把trap和stty放在这篇来讲述. 上篇回顾:Spark源码分析之Spark Shell(上 ...

  4. spark 源码分析之八--Spark RPC剖析之TransportContext和TransportClientFactory剖析

    spark 源码分析之八--Spark RPC剖析之TransportContext和TransportClientFactory剖析 TransportContext 首先官方文档对Transpor ...

  5. Spark源码分析之五:Task调度(一)

    在前四篇博文中,我们分析了Job提交运行总流程的第一阶段Stage划分与提交,它又被细化为三个分阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的 ...

  6. Spark源码分析之Spark Shell(上)

    终于开始看Spark源码了,先从最常用的spark-shell脚本开始吧.不要觉得一个启动脚本有什么东东,其实里面还是有很多知识点的.另外,从启动脚本入手,是寻找代码入口最简单的方法,很多开源框架,其 ...

  7. spark 源码分析之七--Spark RPC剖析之RpcEndPoint和RpcEndPointRef剖析

    RpcEndpoint 文档对RpcEndpoint的解释:An end point for the RPC that defines what functions to trigger given ...

  8. Spark 源码分析系列

    如下,是 spark 源码分析系列的一些文章汇总,持续更新中...... Spark RPC spark 源码分析之五--Spark RPC剖析之创建NettyRpcEnv spark 源码分析之六- ...

  9. spark 源码分析之十一--Spark RPC剖析之TransportClient、TransportServer剖析

    TransportClient类说明 先来看,官方文档给出的说明: Client for fetching consecutive chunks of a pre-negotiated stream. ...

随机推荐

  1. 构建自己的PHP框架(composer)

    完整项目地址:https://github.com/Evai/Aier Composer 利用 PSR-0 和 PSR-4 以及 PHP5.3 的命名空间构造了一个繁荣的 PHP 生态系统.Compo ...

  2. WPF在3D Cad模型中利用TextureCoordinates实现颜色渐变显示偏差值的变化

    原文:WPF在3D Cad模型中利用TextureCoordinates实现颜色渐变显示偏差值的变化 注:最近在做3D机械模型重建方面的软件,需要根据光栅传感器采集的数据绘制3D图形,并显示出色差以及 ...

  3. Swift是一个提供RESTful HTTP接口的对象存储系统,目的是为了提供一个和AWS S3竞争的服务

    Swift是一个提供RESTful HTTP接口的对象存储系统,最初起源于Rackspace的Cloud Files,目的是为了提供一个和AWS S3竞争的服务. Swift于2010年开源,是Ope ...

  4. Matlab随笔之模拟退火算法

    问题描述: 我方有一个基地,经度和纬度为( 70,40).假设我方飞机的速度为 1000 公里/小时. 我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地.在敌方每一目 标点的侦察时间不计 ...

  5. MVC 用基架创建Controller,通过数据库初始化器生成并播种数据库

    1 创建MVC应用程序 2 在Model里面创建实体类 using System; using System.Collections.Generic; using System.Linq; using ...

  6. 解决WPF的ScrollViewer在使用触摸屏时,滑到尽头窗口抖动的情况

    原文:解决WPF的ScrollViewer在使用触摸屏时,滑到尽头窗口抖动的情况 wpf的ScrollViewer在触摸条件下 默认在尽头时会有一个窗口一起被拖动的FeedBack,但对用户的交互很不 ...

  7. css3的calc() css3的百分比减宽,减高,加,乘,除,适合用于后台的排版定位

    css3的calc() css3的百分比减宽,减高,加,乘,除,适合用于后台的排版定位 浏览器支持IE9+.FF4.0+.Chrome19+.Safari6+ calc()语法非常简单,就像我们小时候 ...

  8. 关于SetLength报Out of memory的研究及解决办法

    关于SetLength报Out of memory的研究及解决办法 最近在做一个GIS系统, 在读GIS数据时采用了动态数组,突然读一个数据时SetLength报错!Out of memory 仔细研 ...

  9. 深入理解Amazon Alexa Skill(二)

    理解skill调用 本节来更详细的讨论alexa是如何确定调用哪个skill的. 参考:https://developer.amazon.com/zh/docs/custom-skills/under ...

  10. sqlserver从xlsx读取数据

    exec sp_configure 'show advanced options',1 reconfigure exec sp_configure 'Ad Hoc Distributed Querie ...