题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1020

题意:是中文题。

题解:很显然要设dp[i][j]表示,i个数有j个逆序对有几种然后就是状态的转移,

dp[i][j]=dp[i-1][max(0,j-(i-1)]+.....+dp[i-1][max(j,(i-1)*(i-2)/2];

还会用到前缀和,还有注意最后结果加mod再膜mod,结果可能会负数。

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#define mod 1000000007
using namespace std;
typedef long long ll;
int sum[1000000] , dp[1010][30010];
int main() {
int t;
memset(dp , 0 , sizeof(dp));
dp[1][0] = 1;
dp[2][0] = 1 , dp[2][1] = 1 , sum[0] = 1 , sum[1] = 2;
for(int i = 3 ; i <= 1000 ; i++) {
for(int j = 0 ; j <= i * (i - 1) / 2 && j <= 30000 ; j++) {
if(j == 0) {
dp[i][j] = 1;
}
else {
int gg = (i - 2) * (i - 1) / 2;
if(j - (i - 1) <= 0) {
dp[i][j] = sum[min(gg , j)];
}
else {
dp[i][j] = sum[min(gg , j)] - sum[j - (i - 1) - 1];
}
dp[i][j] = dp[i][j] % mod;
}
}
for(int j = 0 ; j <= i * (i - 1) / 2 && j <= 30000 ; j++) {
if(j == 0) sum[j] = 1;
else sum[j] = sum[j - 1] % mod + dp[i][j] % mod;
sum[j] = sum[j] % mod;
}
}
scanf("%d" , &t);
while(t--) {
int n , m;
scanf("%d%d" , &n , &m);
printf("%d\n" , (dp[n][m] + mod) % mod);
}
return 0;
}

51nod 1020 逆序排列(dp,递推)的更多相关文章

  1. 51nod 1020 逆序排列 DP

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...

  2. 51nod 1020 逆序排列——dp

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...

  3. 51nod 1020 逆序排列 递推DP

    1020 逆序排列  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...

  4. 1020 逆序排列(DP)

    1020 逆序排列 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序 ...

  5. 51nod 1020 逆序排列

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1020 题意: 思路: 一开始用了三重循环... 设f(n,k)表示n个数 ...

  6. 51 Nod 1020 逆序排列

    1020 逆序排列  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...

  7. 【题解】逆序排列 [51nod1020]

    [题解]逆序排列 [51nod1020] 传送门:逆序排列 \([51nod1020]\) [题目描述] 共 \(T\) 组测试点,每一组给出 \(2\) 个整数 \(n\) 和 \(k\),在 \( ...

  8. SQL-27 给出每个员工每年薪水涨幅超过5000的员工编号emp_no、薪水变更开始日期from_date以及薪水涨幅值salary_growth,并按照salary_growth逆序排列。 提示:在sqlite中获取datetime时间对应的年份函数为strftime('%Y', to_date)

    题目描述 给出每个员工每年薪水涨幅超过5000的员工编号emp_no.薪水变更开始日期from_date以及薪水涨幅值salary_growth,并按照salary_growth逆序排列. 提示:在s ...

  9. SQL-15 查找employees表所有emp_no为奇数,且last_name不为Mary的员工信息,并按照hire_date逆序排列

    题目描述 查找employees表所有emp_no为奇数,且last_name不为Mary的员工信息,并按照hire_date逆序排列CREATE TABLE `employees` (`emp_no ...

随机推荐

  1. 机房ping监控 smokeping+prometheus+grafana(续) 自动获取各省省会可用IP

    一.前言 1.之前的文章中介绍了如何使用smokeping监控全国各省的网络情况:https://www.cnblogs.com/MrVolleyball/p/10062231.html 2.由于之前 ...

  2. Zabbix在 windows下监控网卡

    1.zabbix自定义监控Windows服务器的原理 Zabbix为Windows服务器的监控提供了PerfCounter(性能计数器)这个功能.Zabbix客户端通过PerfCounter获取Win ...

  3. Micropython TPYBoard v102 温湿度短信通知器(基于SIM900A模块)

    前言 前段时间看了追龙2,感受就是如果你是冲着追龙1来看追龙2的话,劝你还是不要看了,因为追龙2跟追龙1压根没什么联系,给我的感觉就像是看拆弹专家似的,估计追龙2这个名字就是随便蹭蹭追龙1的热度来的. ...

  4. oracle 正确删除归档日志,并清除 V$ARCHIVED_LOG 数据

    1. 连接 RMAN 管理 rman target / 2. 查看归档日志列表 RMAN> crosscheck archivelog all; 3. 删除所有归档日志 RMAN> DEL ...

  5. Docker最简单入门之(一)——介绍和配置Docker

    0. 前言 最近学完了Dokcer,特别记录一下,算是对自己学习成果的一个总结.以便自己能够更好的理解Docker.粗略估计了一下,我大概会分成4个部分,只记录一下常用的操作,至于一些比较难的操作或者 ...

  6. ThreadLocal线程隔离

    package com.cookie.test; import java.util.concurrent.atomic.AtomicInteger; /** * author : cxq * Date ...

  7. MQ服务器端和客户端通信浅谈

    MQ服务器端和客户端通信浅谈 1. WebSphere MQ的服务端的安装和配置 (1)创建名为venus.queue.manager的默认队列管理器. 在DOS窗口命令提示符下,输入以下命令: cr ...

  8. javaweb基础整理随笔-----上传与下载步骤详解

    这次整理的是上传与下载的原生代码解析: 上传:1.对页面的要求:enctype="multipart/form-data" method="post"      ...

  9. Win服务程序编写以及安装一般步骤

    Win服务程序编写以及安装一般步骤 Windows服务的优点有:1. 能够自动运行.2. 不要求用户交互.3. 在后台运行.本文将介绍常见服务程序编写的一般步骤以及注意事项. 设计服务程序实例: 创建 ...

  10. python变量前的单下划线(私有变量)和双下划线()

    1.单下划线 变量前的单下划线表示表面上私有 ,但是其实这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意 ...